
Connecting Aspects in AspectJ: Strategies vs. Patterns

ABSTRACT
Aspects in AspectJ can be connected to existing classes and
applications in order to amend them with additional ancestors,
methods and advice to existing methods. However, for concrete
usage scenarios there are different options of how to use AspectJ's
features, and these options deeply impact the opportunities for
further evolution of both base classes and aspects.

The purpose of this paper is two-fold. First, it introduces
strategies that describe these options and their specific tradeoffs.
These strategies provide a common terminology and support
developers in deciding which option to use in what situation.
Second, their presentation obviously resembles the structure of
well-known design patterns, but it is not clear to what extent they
can rightfully be regarded as patterns themselves. This issue is
discussed by giving two oppositional position statements.

1. INTRODUCTION
AspectJ developed at the Xerox Palo Alto Research Center is
currently the most popular general purpose aspect language built
on top of the programming language Java and offers additional
composition mechanisms to modularize cross-cutting concerns. It
supplies a class-like construct called aspect that permits to define
code that cross-cuts a given application. Furthermore, it offers
means to define how this code cross-cuts a given application. The
usage of these language constructs has a direct impact on how
reusable an aspect is and how easy it can be applied to new
situations. So the developer has to be careful when designing
aspects using those constructs because it might influence the
evolution of the resulting software or the applicability of the
developed aspects in an undesired way. Since the definition of
how aspects cross-cut applications means to describe connections
between aspects and applications, the main focus of developing
aspects in AspectJ lies on these connections.

In this paper we describe strategies for connecting aspects to
applications in AspectJ. These strategies are recurring in different
contexts, so this collection of strategies can be regarded as a
catalogue that gives developers an overview of techniques that are
used often. Since they are presented in a form that resembles the
structure of (design) patterns it seems reasonable to discuss the
relationship between such strategies and patterns.

In section 2 and 3 we propose recurring strategies and exemplify
their benefit in section 4. In section 5 and 6 we discuss in two

oppositional statements the relationship between the proposed
strategies and patterns. Finally, we summarize this paper.

2. STATIC CROSS-CUTTINGS
According to the AspectJ terminology, we use the term static
crosscutting to describe crosscuttings that influence the interfaces
of the involved types [2]. AspectJ provides a mechanism called
introduction to achieve this kind of influence.

Direct Ancestor Introduction
It is often observable that different objects have common
properties from a certain perspective. A perspective is a
subjective view on the system, this means such mutuality is not
intrinsic to those objects. From this perspective, all of those
objects should be treated in the same way and therefore should be
substitutable. In object-oriented programming substitutability is
achieved by classification. Here classification does not occur
because of intrinsic common properties of such objects, but
because of an aspect specific view on the system. Therefore the
classification is not part of the object definition, but part of an
aspect definition. A direct ancestor introduction directly
introduces an aspect-related, extrinsic ancestor to objects, i.e. the
desired mutuality of objects is not intrinsic to those objects.

introduced ancestor

introduces ExtrinsicAncestor

introduced
ancestor

ApplicationClass

«interface»

ExtrinsicAncestor

«aspect»
AncestorIntroducingAspect

Figure 1: Direct Ancestor Introduction

The participants of this strategy are:

• extrinsic ancestor: the class, interface or aspect that contains
the common properties.

• ancestor-introducing aspect: the aspect that defines the
classification.

The consequences of using a direct ancestor introduction are:

• extrinsic classification: classification of objects is not only
determined by the class definition, but also by the
introducing aspect.

• matching signatures: when applying this strategy the
developer must guarantee that the application related class is
able to establish the introduced ancestor. For example, if the
ancestor is an interface the developer has to guarantee that
the class implements the methods of that interface.

Stefan Hanenberg
University of Essen, Institute for Computer Science

Schützenbahn 70, D-45117 Essen, Germany
shanenbe@cs.uni-essen.de

Pascal Costanza
University of Bonn, Institute of Computer Science III

Römerstraße 164, D-53117 Bonn, Germany
costanza@cs.uni-bonn.de

AspectJ directly supports the direct ancestor introduction on the
language level. This strategy just corresponds to the usual
application of static cross-cutting for declaring an implements or
extends relationship where the type pattern in the introduction
directly corresponds to existing classes.

Direct Member Introduction
Sometimes it is desirable to add properties to selected objects
because of a certain perspective. This means that from a certain
perspective, different objects have common properties. A direct
member introduction introduces extrinsic properties directly to
objects without achieving substitutability of those objects.

The participant of this strategy is:

• member-introducing aspect: the aspect that contains the
introduction. The introduction directly refers to the classes of
those objects that should get the new members.

introduces introducedMember

ApplicationClass «aspect»
MemberIntroducingAspect

Figure 2: Direct Member Introduction

The consequences of using a direct member introduction are:

• limited reusability: the introductions themselves a hardly
reusable since AspectJ does not permit to override
introductions incrementally in an "object-oriented
programming way". For example, if the developer decides
later on that the introductions should be applied to further
classes or interfaces, the aspect itself has to be modified.

• members inherent to the aspect: the introduced members are
extrinsic to the objects. Therefore the developer has to
guarantee that only clients that are aware of the introducing
aspect can use them.

• no substitutability: although different classes get common
properties their instances are still not substitutable.

• member conflicts: The developer has to guarantee that there
are no conflicts between the extrinsic and intrinsic members.
For example, no extrinsic member's identifier is allowed to be
equal to an intrinsic member's identifier.

AspectJ directly supports direct member introductions on the
language level.

Indirect Introduction
Sometimes it is necessary to apply several introductions to certain
objects from different perspectives. This means that there are
several extrinsic characteristics that originate from different
perspectives and should be combined to be applied to certain
objects later on. Although it is known which perspectives are to
be combined the definition of the objects that they are to affect
should be deferred. An indirect introduction collects several
extrinsic properties from different perspectives within one unit
and defers the binding to existing objects.

The participants of this strategy are:

• introduction container: the unit that is used as the target for
the introductions. The container contains the property
definitions and the ancestor relationships.

• introduction loader: the aspect that introduces properties and
ancestors to the container.

• container connector: the aspects that connects the container
to application classes.

connects container

introduces IntroductionContainer «aspect»
IntroductionLoader

«aspect»
ContainerConnector

ApplicationClass

Figure 3: Indirect Introduction

The consequences of using an indirect member introduction are as
follows:

• reusable introductions: the introductions are defined
independent of the classes they influence and their
application just consists of a container connection without
the need to re-implement the introductions itself.

• little aspect-related knowledge required at connection time:
the container connection does not need to know about
introduction loaders.

• member conflicts: because the container connector does not
know about the concrete introductions to the container there
is some danger of possible conflicts between class members.
The container connector cannot resolve conflicting
introductions because the introducing aspects are transparent.

In AspectJ there are mainly two ways of implementing a indirect
introduction. First, it is possible to introduce members and
ancestors directly to an interface. In this case the ancestor
introduction is limited. For example, it is not possible to introduce
a class as an ancestor to an interface. Second, it is possible to
introduce members and ancestors to each class that implements
the container interface. Then the interface can be applied to classes
by a direct ancestor introduction. The difference to the former
implementation is that the container is not changed by the
introduction loaders. Instead it is only used for identifying the
classes that are to be affected by the introductions. Both
approaches have in common that they make use of a direct
ancestor introduction.

3. DYNAMIC CROSS-CUTTINGS
The previous sections describe strategies for adding attributes or
ancestors that do not influence the behavior of applications. This
can only be achieved by so called dynamic cross-cuttings. AspectJ
provides two language constructs for dynamic cross-cutting:
advice and pointcuts. Advice define the adapted behavior and
pointcuts the places where advice crosscut existing structures.
Like in the sections before, the names of the strategies are directly
derived from the AspectJ terminology.

Direct Pointcut Connection
Sometimes is it desirable to adapt the existing behavior of certain
objects well known to the developer. The behavior to be added is

extrinsic to such objects and it is not assumed that the behavior of
any further objects not mentioned in this context should be
amended in the same way. A direct pointcut connection directly
influences the behavior of application objects.

 pc refers to class

ApplicationClass

«aspect»
ConcretePointcutAspect

pointcut pc(): ...

Figure 4: Direct Pointcut Connection

The strategy consists of the following participants:

• concrete pointcut aspect: the aspect that contains the behavior
to be added and the definition of the situations when the
additional behavior takes place.

The consequences of this strategy depend on its implementation:

• no incremental modifications: if the aspect itself includes
concrete pointcuts (that are not inherited from a
superaspect), there is no possibility to modify them
incrementally (see [6] for a further discussion).

Direct pointcut connections are directly supported by AspectJ
and correspond to the standard application of concrete pointcuts.

Indirect Pointcut Connection
An indirect pointcut connection defines a uniform way for adapting
object behavior without naming the concrete objects.
 Adapt behavior Behavior
AdaptationContainer

«aspect»
BehaviorAdaptationLoader
pointcut pc (): ...

connects container
ApplicationClass «aspect»

ContainerConnector

Figure 5: Indirect Pointcut Connection

The participants of this strategy are

• behavior adaptation container: the container that collects
several behavior adaptations.

• behavior adaptation loader: the aspect that contains the new
behavior and the description at what join points the new
behavior should occur.

• container connector: the aspect that connects the behavior
adaptation container to the application classes.

The consequences of using an indirect pointcut connections are:

• typespecific cross-cuttings: the dynamic cross-cutting code
can be attached to arbitrary types. However, it is not
possible to attain behavior-specific cross-cuttings.

• few aspect-related knowledge required at connection time: the
pointcut definitions are transparent to the container
connector. No information is needed about the behavior
adaptation loaders to perform the connection.

• aspect conflicts: the developers that implement the behavior
adaptation loaders must guarantee the consistency of the
loaders. The container connector cannot detect or solve any
consistency problems.

In AspectJ an indirect pointcut connection is achieved by defining
(concrete) aspects with (concrete) pointcuts for a specific

interface. Afterwards, this interface can directly be introduced to
application classes.

Template Advice
A template advice separates the definition of behavior adaptation
from the definition of how this behavior crosscuts a given
structure. The crosscut is available as a hook for later
specification, independent of the actual behavior. In that way, a
template advice allows advice to be reused in different situations.

extends

«aspect»
ConcreteAspect

pointcut hook():...

«abstract aspect»

TemplateAspect
abstract pointcut hook();

concrete pointcut
 ApplicationClass

Figure 6: Template Advice

A template advice consists of:

• template aspect: the aspect that contains new behavior
without specifying where this new behavior occurs. The
behavior should take place at a certain hook pointcut.

• concrete aspects: the aspect that extends the template aspect
and specifies the corresponding join points where the
behavior should take place.

The consequences of applying a template aspect are:

• pointcut independent aspect reuse: it is possible to apply the
behavior adaptation to situations that have not been foreseen
at the time of aspect definition.

• non-transparent pointcut: in contrast to the indirect pointcut
connection the developer responsible for connecting the
dynamic cross-cutting code to an application has to know
something (the hook pointcut) about the aspect to connect.

In a straight forward implementation of a template advice in
AspectJ, the template aspect has to be abstract and the concrete
aspect has to extend the concrete aspect. In [6], the application of
the template advice in AspectJ is discussed in more detail.

Composite Pointcut
It is often observable that the way dynamic crosscutting occurs
can be expressed by a combination of independently defined
dynamic cross-cuttings. A composite pointcut separates a pointcut
into two logically independent pointcuts.
 «aspect»

InDirectPointcutConnectingAspect
pointcut compositePC ():
 componentPC1() operator componentPC2();
pointcut componentPC1():
pointcut componentPC2():

Figure 7: Composite Pointcut

A composite pointcut consists of the

• component pointcuts: the logically independent pointcuts.

• composite pointcut: the pointcut that combines several
component pointcuts.

The consequences of using a composite pointcut are:

• independent pointcut modification: the logically independent
component pointcuts can be modified without knowing the
complete (composite) pointcut.

• pointcut consistency: the composite pointcut cannot guarantee
the consistency of the pointcuts, so the developer must be
aware of how to define the component pointcuts correctly.

In AspectJ a composite pointcut can be implemented by defining
a pointcut that consists of a combination of pointcuts and does
not use any pointcut designators on its own. Usually a composite
pointcut is used in the context of a template advice.

4. EXAMPLE
In this section we analyze an implementation of the Observer
pattern [5] in AspectJ similar to the one proposed in [2] by
applying the strategies described above.

For example, we would like to provide graphical representations
of application-specific objects that are automatically revised
whenever the corresponding subjects changes. To support the
Observer pattern, subjects must provide an interface for attaching
and detaching observers. So the mechanism of member
introduction in AspectJ can be used to equip classes with the
(extrinsic) methods for attaching and detaching observers without
actually changing the application's source code. The question is if
a direct member or a indirect introduction should be used. Since
the subject related methods can be used for a number of different
classes (even though we are right now just interested in a few of
them) an indirect introduction provides more flexibility. So we
build the interface Subject (introduction container) that includes
the methods addObserver() and removeObserver().
Moreover, we create an interface Observer that contains the
method update() that should be invoked whenever a subject
changes.

In order to allow an indirect introduction, we create the
introduction loader SubjectObserverProtocol that
introduces appropriate implementations to Subject:
aspect SubjectObserverProtocol {
 public Vector Subject.observers = new Vector();
 public void Subject.addObserver(Observer obs) {
 observers.addElement(obs);
 obs.setSubject(this);}
 public void Subject.removeObserver(Observer obs) {
 observers.removeElement(obs);}
}
Additionally, we are able to implement actions that should happen
whenever a subject's state changes in this aspect: the update()
method of every attached observer must be invoked. This code is
part of the dynamic cross-cutting because it should be executed
whenever the join points have been reached that immediately
follow a change of the subject's state. However, it is hardly
possible to define a consistent connection strategy for all possible
subject classes in this case (cf. [3], [4], [6]). Therefore, we make
use of the template advice that defers this decision. We regard it as
a good idea to implement the advice in SubjectObserver-
Protocol and thus we have to define the aspect abstract:

abstract aspect SubjectObserverProtocol {
 ...
 ... pointcut stateChanges(Subject s) ...
 after(Subject s): stateChanges(s) {
 for (int i = 0; i < s.observers.size(); i++)
 ((Observer) s.observers.elementAt(i)).update();
 }
}
We still have to decide how to implement the pointcut connection.
Obviously, we are able to define that the observed target is of
type Subject. However, we cannot decide what message
receptions change a subject's state. Therefore the needed pointcut
consists of a known part (target is of type Subject) and an
unknown part. Therefore, we should use a composite pointcut.
abstract aspect SubjectObserverProtocol {
 ...
 abstract pointcut stateChanges();
 after(Subject s):
 target(Subject) && stateChanges(s) {...}
...}
The implementation in [2] does not use a composite pointcut and
just uses an abstract pointcut. The result is that developers that
want to apply the protocol have to guarantee that the pointcut
parameter s refers to the right subject instance in their pointcut
definition. Instead, the use of the composite pointcut already
restricts developers to targets of type Subject, and therefore
reduces errors when connecting the protocol to an application.

This example illustrates how the strategies for connecting aspects
introduced above allow us to design a concrete high-level
subject/observer protocol in AspectJ. Nevertheless, there are still
some variation points of how the protocol can be applied to
existing applications.

Whereas the usage of the indirect introduction needs Subject to
be used as the extrinsic ancestor in a direct ancestor introduction,
the actual implementation of the method update() in
Observer is not fixed. It can either be added by a direct member
introduction (the implementation in [2] uses this strategy), or by a
simple Java implements relationship where the developer of the
observer class is responsible for the definition. Furthermore, it is
not prescribed how the concrete pointcut (stateChanges()) of
SubjectObserverProtocol is connected to the application
within the template advice. Usually, this is achieved by a direct
pointcut connection.

5. Hanenberg: Strategies, no Patterns
In the previous sections, we have introduced recurring strategies
that are used when developing AspectJ applications. I use the
term strategy intentionally to delimit it from the term "pattern". In
the following sections, I argue that these strategies are no patterns.

The main purpose of identifying these strategies was to find out
what language features of AspectJ are usually used in what
situations. Afterwards, we wanted to provide a catalogue of
strategies that supports developers to decide what strategy to use
in certain situations. Thereto, it is necessary to organize the
strategies in a way that allows developers to easily identify them

and find out when and how to use them. Furthermore, developers
must be aware of the consequences when using a certain strategy.

We organized the strategies in the following way. Every strategy
has a unique name, a description of its essence, a description of a
situation where it is typically used (skipped in this paper), a
description of the strategy's participants, an illustration of its form,
a discussion of the consequences of its application and a
discussion of how the strategy can be used in AspectJ.

In this way, the strategies are organized similar to the GoF-design
patterns [5]. Furthermore, it seems as if the benefit of the
strategies is similar to that of design patterns: developers get a
common vocabulary that eases their communication, and a
catalogue that permits to decide when to use what strategies. In
section 4 we have shown how those strategies can be applied in
concrete scenarios. Nevertheless, there are differences between
patterns and the strategies mentioned here.

The success of patterns is based upon a common understanding of
object-oriented programming. All of the GoF design patterns are
directly build on top of object-oriented constructs. Such a
common understanding permits the problem and solution to be
visualized effectively, by using standard object-oriented notations.
Finally, the solution part of patterns can easily be understood by
all object-oriented developers. Although the underlying
programming languages may differ, developers are familiar with
concepts like object or message. A similar situation is yet not
given in the aspect-oriented community. Until now, there is no
common understanding of aspect-oriented programming and
therefore, no commonly accepted design notation.

The strategies have directly arisen from the usage of AspectJ, so
they are the result of observing AspectJ code. This means that the
strategies depend highly on the language. Although other aspect-
oriented approaches like HyperJ permit to implement these
strategies as well, the form of their implementation completely
changes - aspects do not exists on the language level, and for
example, no inheritance relationship between aspects can be used
as is required in the template advice. As the form of the strategies
differs between different aspect-oriented approaches, there is no
reasonable usage of them. For example, a HyperJ programmer
would not understand how the illustration of a strategy relates to
the tool at hand.

Furthermore, it should be mentioned that the distinction between
static and dynamic cross-cutting has directly arisen from
AspectJ's terminology. However, there is a parallel between a
template advice (dynamic crosscutting) and an indirect pointcut
connection (static crosscutting). Both allow crosscutting code to
be defined without specifying what locations the code should be
woven into. So the distinction between static and dynamic
crosscutting does not seem to be "natural". If we would only
distinguish between crosscutting strategy (the way how something
crosscuts various structures) and crosscutting code the only
difference would be that code might affect code within a method
(dynamic crosscutting) or code within a class (static crosscutting).

There does not seem to be a strict necessity to provide different
language features for both kinds of crosscutting.

Because of the language dependency it seems to be more
appropriate to discuss the relationship between the strategies and
idioms that are "low-level patterns specific to a programming
language (…) which describe how to implement particular aspects
of components or the relationships between them using the
features of the given language." [1].

The second major reason why the strategies are no patterns is
based on their "quality". The "quality without a name" describes
the "life and wholeness" of a product. Patterns are constructs for
generating this quality, so software generated by a suitable
application of patterns should have the quality. However, our
strategies were identified from an appropriate usage of the
language constructs provided by AspectJ. In fact it cannot be
definitively determined if the usage of those constructs has this
quality because of the following reasons: there is not enough
experience in the area of aspect-oriented programming to
determine the quality of an (aspect-oriented) solution. It is not
even determined, if the composition mechanism in AspectJ are
good at all, even though they seem to solve known problems in
object-oriented programming. To determine if some of these
strategies are patterns, it is necessary to have a lot of experience in
the area of aspect-oriented programming.

At least there seems to be a difference in the abstraction of the
strategies in comparison to known patterns. The strategies
concentrate on how to connect aspects with existing software -
how extrinsic properties can be attached to objects. In this way,
the problem space handled by those strategies seems to be directly
derived from the typical problem of aspect-oriented programming
on the implementation level.

So the overall impression is as follows. Although there are
similarities between the strategies and patterns, they are not equal.
I doubt that trying to bring the strategies to a corresponding
pattern form would really result in new aspect-oriented patterns,
since they are too dependent on the language AspectJ.
Nevertheless, there seem to be strategies which are more
interwoven with AspectJ (like composite pointcut) than others
(like direct member introduction). From my point of view, it
seems to be appropriate to compare new aspect-oriented
technologies which appear from time to time with the strategies.
This might improve a common understanding on aspect-oriented
programming and improve the understanding on the mutuality of
different aspect-oriented techniques.

6. Costanza: A First Step Towards AO Patterns
Before giving my position about the work introduced in this
paper, I would like to recall the general idea of Patterns. At the
present stage, there are mainly two views on what Patterns are all
about. The one is to characterize Patterns as a literary form that is
well-suited to communicate recurring problems and good solutions
that resolve the forces of these problems. For this reason, a
generally accepted "canonical form" has been established over the

past years. According to this form, each pattern consists of a
name, a problem statement, a context, the forces that lie at the
center of the problem, a solution, examples, the resulting context, a
rationale (why the pattern works), related patterns and known
uses [1]. Although the AspectJ strategies of this paper do not
exactly match this form, they surely are very close. The only
really missing elements are the forces, examples, the resulting
context, related strategies and known uses. It is easily conceivable
that examples can be drawn from introductory material, for
example [2], and known uses from ongoing "real-world" projects
that make use of AspectJ. The relation between certain strategies
can already be seen to some extent in this paper – for example, the
direct vs. indirect introduction are roughly used for the same
purposes, with different tradeoffs (resulting contexts). It is
equally conceivable to elaborate on the forces. An interesting case
is the need to modularize crosscutting concerns which would be a
force that all aspect-oriented strategies have in common. The fact
that there might not be enough known uses for the strategies given
here implies that they can only be regarded as "proto-patterns"
[1], but on a more general level, from a "literary" point of view,
they certainly qualify for being good examples of the pattern idea.

Another view on Patterns is the notion of achieving the so-called
"Quality Without a Name" (QWAN). A "light-weight" paraphrase
of this idea is the goal of making people feel more comfortable. For
example, programs that employ object-oriented design patterns [5]
make programmers more comfortable in changing their source code
and, for example, adding new functionality. Again, the strategies of
this paper qualify for having QWAN, at least in principle, because
they also aim at easing the maintenance of software. Again, the
lack of known uses, or other rationales, indicate that they can only
be regarded as "proto-patterns" because their application in the
"real world" might necessitate their modification in order to really
achieve QWAN. However, this does not generally preclude their
perception as patterns.

It is important to note that none of the views on Patterns
presented here require them to be applied in object-oriented
contexts only – the patterns from [5] just happen to be based on
the building blocks of object-oriented programming, like
composition, inheritance, overriding, and so on. However, many
patterns also encompass other areas, for example other
programming paradigms, as in hybrid languages like C++ and Lisp,
up to methodological and organizational patterns that do not
directly deal with programming at all [8]. So regardless of the view
on patterns as a literary form or as a means to achieve QWAN,
there is no reason at all to not apply them in an aspect-oriented
setting. The only difference is that now aspect-oriented concepts
are the building blocks, like pointcuts, introductions and advice.

So my conclusions are as follows. The strategies presented in this
paper are a very valuable first step towards a catalogue of aspect-
oriented patterns. Future steps include...

• ...elaboration of forces and known uses. These are the missing
elements that probably require most of the work and
investigation of existing projects.

• ...discovery of more advanced aspect-oriented patterns. The
strategies of this paper are very elementary ingredients to
aspect-oriented programming, but there will certainly arise
more complex scenarios. For example, good candidates for
solutions to be documented in pattern form are those that
deal with feature interaction among different aspects.

• ...generalization of aspect-oriented patterns in order to be
independent of a specific aspect-oriented approach. Apart
from being more useful in different environments, such
patterns would help to improve our understanding of the
essence of the still emerging field of AOSD.

7. Summary
In this paper we have pointed out that the main focus of aspect-
oriented software development lies in the connection between
aspects and applications. We have described recurring strategies
for connecting aspects and applications in AspectJ and we have
illustrated how they can be used in a concrete example.
Afterwards we have discussed to what extent these strategies can
be regarded as patterns or not by giving two oppositional
positions statements.

In conclusion, it is clear that developers who want to exploit the
prominent features of aspect-oriented approaches need to gather
good solutions and communicate them effectively. This paper
provides strategies for AspectJ as good starting points and in
doing so, hints to a feasible future practice of documentation for
the aspect-oriented community, regardless of whether the
proposed strategies will be perceived as patterns or not.

8. REFERENCES
[1] Appleton, B., Patterns and Software: Essential Concepts and

Terminology,
http://www.enteract.com/~bradapp/docs/patterns-intro.html

[2] AspectJ-Team, The AspectJ Programming Guide,
http://aspectj.org/doc/dist/progguide/

[3] Brichau, J., De Meuter, W., De Volder, K., Jumping Aspects,
Workshop on Aspects and Dimensions of Concerns,
ECOOP, 2000.

[4] Costanza, P., Vanishing Aspects, Workshop on Advanced
Separation of Concerns, OOPSLA, 2000.

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns, Addison-Wesley, 1995.

[6] Hanenberg, S., Unland, R. Using And Reusing Aspects in
AspectJ. Workshop on Advanced Separation of Concerns,
OOPSLA, 2001.

[7] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., Irwing, J. Aspect-Oriented
Programming. Proceedings of ECOOP, 1997.

[8] Rising, L., The Pattern Almanac 2000, Addison Wesley,
2000.

