
JMangler – A Framework for Load-Time Transformation of Java Class Files

Günter Kniesel and Pascal Costanza
University of Bonn, Institute of Computer Science III

Römerstr. 164, D-53117 Bonn, Germany

fgk|costanzag@cs.uni-bonn.de

Michael Austermann
SCOOP GmbH, Im Ahlefeld 23

D-53819 Neunkirchen-Seelscheid, Germany

maustermann@scoop-gmbh.de

Abstract

Current proposals for load-time transformation of Java
classes are either dependent on the use of a specific class
loader or dependent on a specific JVM implementation.
This is not due to an inadequacy of the Java platform but
to the wrong choice of the level at which to hook into the
Java Class Loader Architecture. JMangler follows a novel
approach that ensures both class loader and JVM indepen-
dence by hooking into the base class of all class loaders.

Furthermore, existing proposals do not allow transform-
ers to be treated as components because implicit dependen-
cies must be resolved manually. This paper shows that au-
tomatic composition is possible for the well-defined class of
interface transformations that still include powerful trans-
formations, like addition of fields, methods and classes,
and changes to the class hierarchy. Consequently interface
transformers can be deployed jointly even if developed in-
dependently.

1. Introduction

Tight development schedules and high quality expecta-
tions of customers create an ever increasing pressure for
(re)use of readily available third-party components. At the
same time, rapid changes in markets, legislation and enter-
prise strategies result in unforeseen changes of requirements
that software has to meet. The inability to adapt third-party
components whose source code is unavailable to unforeseen
changes effectively prevents software development teams
from achieving the necessary degree of reuse.

This dilemma led to the call for information rich bi-
naries, which would contain enough symbolic information

from the source program to enable automated analysis and
transformation [8]. The Java Class File Format is the first
commercially widely-adopted binary format that provides
this property.

However, transformation of Java Class Files, while pos-
sible, is by no means easy to achieve. The foremost problem
arises from the fact that Java allows classes to be loaded dy-
namically and the name of dynamically loaded classes to be
determined at run-time, via reflection. Code that has been
loaded already cannot be transformed anymore. So the only
point where it is possible to determine all classes that are
actually used by a program and adapt them as needed is the
dynamic class loading process.

However, implementation of load-time transformations
of class files is an intricate task. It requires intimate knowl-
edge of the class file format and class loader architecture, at
least. This motivated the development of tools and frame-
works for load-time transformation, which provide differ-
ent solutions for hooking into the class loading process.
The next section summarizes the state of the art in load-
time transformation of Java code, pointing out limitations
of previous approaches that motivated this work. Section 3
presents the JMangler framework, the particular problems
encountered in trying to overcome current limitations, and
the solutions that we propose. An application example is
given in section 4. JMangler is compared to related work
in section 5. Section 6 summarizes the results and sketches
future work.

2. State of the Art

Load-time transformation of Java class files is a rela-
tively new research area. We are aware of only three ap-
proaches that go beyond the mere representation of Java



class files1 by providing complete solutions for the integra-
tion into the class loading and linking process of the Java
platform. Other notable criteria for comparison are expres-
sive power, and suitability for use in the software life cycle.

A short overview of each approach is given first, fol-
lowed by a compilation of their main distinctions. It sheds
light on the diverse forces that have to be taken into account
in the design of a new approach and ultimately leads to the
rationale behind JMangler.

2.1. Binary Component Adaptation

Binary Component Adaptation (BCA) [11] has been the
first approach that enables compiled Java classes to be mod-
ified during load-time. Modifications are declared as delta
files in a Java-like language that offers a predefined set of
transformations. The invocation of the Java interpreter can
be parameterized with one or more compiled delta files
which are then applied to their target classes during load-
time.

BCA has been integrated into the implementation of the
Java Virtual Machine of JDK 1.1 for Solaris, and therefore
cannot be used with other JVMs.

2.2. Java Object Instrumentation Environment

The Java Object Instrumentation Environment (JOIE)
[3] is a Java framework for load-time transformations of
class files. It does not employ a specific transformation lan-
guage. Instead, transformations must be implemented as
Java classes and registered with a specific class loader. This
class loader creates object-based representations of class
files during load-time and passes them sequentially to all
registered transformers, which can perform arbitrary modi-
fications.

Since JOIE is implemented in pure Java, it can be used
with arbitrary implementations of the JVM.

2.3. Javassist

Javassist [2] is a class library for structural reflection
during load-time that is implemented in pure Java. It takes
a different route from those pursued by BCA and JOIE. It
concentrates on the design of a meta-object protocol and
regards its applicability during load-time as an implementa-
tion detail. Nevertheless, this approach effectively results in

1Some class libraries for class file representation and modification are
available that can be used as a base for transformation tools, but they do
not provide for sophisticated transformation processes. JMangler uses the
Byte Code Engineering Library (BCEL, former “JavaClass”) [5]. Other li-
braries available are the Jikes Bytecode Toolkit (JikesBT) [9] and the Byte-
code Instrumenting Tool (BIT) [10], as well as the API included in JOIE
(see section 2.2).

modifications of Java class files during load-time so it still
fits into our category of related approaches.

The integration into the linking process is implemented
in a way similar to JOIE, by providing a specialized class
loader that creates an object-based representation of a class
file. Structural reflection and modifications of classes are
expressed programmatically by means of a dedicated API.
Only a limited set of modifications can be applied to classes
that adhere to Javassist’s meta-object model.

2.4. Forces

From the analysis of these frameworks for load-time
transformations, we have extracted the following forces that
we have addressed in the implementation of JMangler. An
overview of these forces is given in table 1.

2.4.1. Integration into the Java Platform

JVM independence BCA hooks into the class loading
process via a modification of a JVM implementation, there-
fore tying itself to a specific platform and a specific JVM
version. JOIE and Javassist achieve JVM independence by
being implemented in pure Java. This is clearly preferable.

Applicability of transformers Java’s class loader archi-
tecture [6] is an open system that allows for integration
of arbitrary class loaders. The Java core API offers stan-
dard class loaders that are able to load classes from known
sources, ranging from the local file system to remote web
hosts via secure sockets.

A shortcoming of JOIE and Javassist is that they are class
loader dependent – classes which need to be transformed
are required to be loaded by a specific class loader that is
supplied by the respective transformation framework. This
makes them inapplicable to programs that need their own
(different) class loader, as is the case for applets and dis-
tributed applications. The reason is that there is no way to
let different class loaders simultaneously process the same
copy of a class file.

It is clearly desirable to have class loader indepen-
dent transformers, which are applicable without restric-
tions. Currently, BCA is the only approach that offers class
loader independent transformers because of its integration
into a specific JVM. The challenge is to find a way of in-
tercepting all class loading activities but still remain JVM
independent.

External configuration JOIE and Javassist require trans-
formers to be programmatically registered with a specific
class loader. This results in the need to recompile a pro-
gram when the set of transformers needs to be changed. In
contrast, BCA allows a set of delta files to be specified as



BCA JOIE Javassist Wish list
Integration into the Java Platform
JVM independence – p p p

Class loader independence p – – p

External configuration p – – p

Expressive Power
Kinds of transformations some any some any
Preservation of binary compatibility p – p p

Multi-class transformers – – (p) p

Simple transformation language p – – p

Suitability for Component-Oriented Programming
Multiple transformers p p – p

Independent extensibility – – – p

Table 1. State of the art of in load-time transformation

parameters to the invocation of the Java interpreter. This
kind of external configuration is preferable in order to min-
imize turn-around time.

2.4.2. Expressive Power

Kinds of transformations BCA and Javassist place re-
strictions on the kinds of modifications that transformers are
allowed to carry out. BCA allows classes and interfaces to
be amended with new fields and methods, including code. It
does not, however, allow existing members to be changed.
Changes can be simulated by renaming existing members
and adding new members with the old name. However,
there is no way to have the code of the ”new“ methods pro-
grammatically generated from the code of the old methods.
Javassist extends these options by allowing for a restricted
set of changes to fields and methods, including changes to
code. However, it limits the introduction of new methods to
copies of existing ones.

In contrast, JOIE allows for all kinds of modifications,
including addition, change and removal of fields and mem-
bers as well as arbitrary changes to code. Of course, the
possibility to change as many details as possible is prefer-
able, but amounts to possibly breaking the expected proper-
ties and behavior of programs.

Preservation of binary compatibility For example, the
Java Language Specification [7] defines a set of changes of
a program that do not require clients to be recompiled. Such
changes are said to preserve binary compatibility. A trans-
formation system should support all changes that preserve
binary compatibility and offer means to prevent all others.

Since Javassist only offers a strongly limited set of trans-
formations to be carried out, binary compatibility is not an
issue. BCA and JOIE allow for modifications that are com-
plex enough to possibly break binary compatibility. Yet,

JOIE does not provide any means to prevent violations of
binary compatibility. BCA solves this problem by adding a
specific attribute to every class that is compiled against an
adapted component. When a name clash occurs, the system
can resolve it by inspecting this attribute.

Multi-Class transformers BCA and JOIE only support
single-class transformers which process classes one by one.
Javassist additionally allows transformers to inspect prop-
erties of related classes in each step. Still, none of these
approaches allows for multi-class transformers, which si-
multaneously transform multiple classes. Multi-class trans-
formers are needed when mutual dependencies between
classes occur during the transformation process. An exam-
ple is given in section 4.

2.4.3. Suitability for Component-Oriented Program-
ming

Transformers should be expressible in a form that takes the
shape of components with explicit context dependencies
only [12]. The aim is to make the transformation frame-
work extensible by independently developed transformers.
This is far from being trivial and has not been addressed
explicitly by any of the previous approaches.

Multiple transformers The applicability of multiple
transformers to the same classes is a minimal prerequisite
for the use of transformers as components. Of the previ-
ous approaches, only BCA and JOIE support multiple trans-
formers.

Independent extensibility In order to resolve implicit de-
pendencies between transformers, BCA and JOIE burden
the programmer with the specification of an order in which
transformers are to be applied. Furthermore, when two or



more transformers add properties to a class that cause the
need of mutually reapplying the other transformers, it is
hard — or even impossible — to find a reasonable order
of transformations.

However, in order to allow transformers to be used as
components, implicit dependencies must be avoided com-
pletely [12] and a support for determining an order of trans-
formations is needed.

2.4.4. Simple Transformation Language

BCA is the only approach that offers a simple transforma-
tion language to express modifications of classes. It is easy
to learn but only covers a limited set of modifications.

In fact, it is hard to design a clean and simple language
that enables a wide range of relevant transformations, espe-
cially if arbitrary changes to all aspects of class members,
including the code of methods, are to be supported. The
design of a good high-level language model for transforma-
tions is an open research issue.

3. JMangler

JMangler is a Java framework for transformation of class
files at load-time that extends the state of art with regard to
almost all the aspects mentioned above. It plugs neatly into
the Java architecture, providing an API for the creation of
code and interface transformer components. 2 It further pro-
vides the ability to load sets of transformers, combine the
transformations that they specify and perform these trans-
formations on all classes of a program.

In the following sections we outline JMangler’s basic
concepts, explain how composition of independently devel-
oped transformers is achieved and describe how JMangler
is integrated into the Java platform.

3.1. Basics

Legal Transformations JMangler supports all transfor-
mation of class files that do not violate binary compatibility.
In particular, it supports

� addition of classes, interfaces, fields and methods,

� changes of a method’s throws clause,

� changes of a class’s extends clause that do not re-
duce the set of direct and indirect superclasses,

� changes of a class’s implements clause that do not
reduce the set of direct and indirect superinterfaces,

2In the following, the simpler term transformer is often used instead of
transformer component.

� addition and changes of annotations that respect binary
compatibility,

� changes of method code.

All transformations mentioned in the first five items of
this list are called interface transformations. Changes of
method code are called code transformations.

Contrary to fields, which are assigned default values by
Java, methods cannot be given any meaningful “default
behavior” in the general case. Therefore, when adding
non-abstract methods during interface transformations, they
must be supplied with initial code. Consequently, the addi-
tion of a method including an initial method body is still
regarded as a pure interface transformation.

Transformers Transformers are Java classes that imple-
ment specific interfaces (InterfaceTransformer and
CodeTransformer). Implementation of these interfaces
can be performed using JMangler’s API. It supports three
types of operations:

� analysis of class files, in order to determine whether a
specific transformation is applicable,

� interface transformations and

� code transformations.

A transformer component that implements the opera-
tions of the InterfaceTransformer interface can per-
form one or many related interface tranformations. The
same is true for code transformations. A transformer can
play both roles by implementing both interfaces. Thus it is
possible for one component to provide a consistent set of
related interface and code transformations.

The Counter transformer, illustrated in Figure 1, is an
example of such a combined transformer. It extends a class
by a counter for each field. It further adds code to incre-
ment this counter prior to each direct read access to the as-
sociated field. The addition of counter fields is an interface
transformation. The addition of instructions to increment
counter fields is a code transformation. Nevertheless, both
can be implemented in one transformer component and rely,
for instance, on a common naming convention for the added
fields.

3.2. Composition of Transformers

The main challenge in the design of JMangler resulted
from the aim of enabling unanticipated composition of in-
dependently developed transformers.

When multiple transformers are active simultaneously,
different transformers might be applicable to the same class.
If their joint use has been anticipated, it is possible to ex-
plicitly specify how they are to be composed. However,



public class C f
public B b = new B();

public void manipulateB() f

b.doSomething();
g

g

public class C f
public B b = new B();
private int b counter = 0;

public void manipulateB() f
b counter++;
b.doSomething();

g
g

Initial program Result after application of Counter transformer

Figure 1. The Counter transformer

there is no satisfactory means to safely combine transform-
ers that have been developed independently without their
being specifically designed for joint use. Whenever in-
dependently developed transformers are provided as black
boxes (which is the core idea of component oriented devel-
opment), the composer most likely does not have enough
knowledge of their design and implementation in order to
decide on the proper composition.

In this context, the challenge in the design of JMangler
was to find an automatic way of combining black box trans-
former components that avoids unwanted side effects. The
problem has two main aspects, which are discussed in the
following subsections:

� mutual triggering of transformers and

� order-dependent semantics of transformations.

3.2.1. Mutual Dependencies

The first problem of unanticipated composition is the possi-
ble occurence of mutual dependencies among transformers
or among transformed classes.

Mutual Triggering A property of a program is a condi-
tion that refers to an individual class or to possibly complex
relationships of many classes. A transformation that is per-
formed if a certain property holds is said to be triggered by
that property. For instance, “there is a public field in this
class” is a property that might trigger the addition of ac-
cessor methods to a class. The property “there is a direct
field access” might trigger the replacement of a field access
instruction by an accessor method invocation.

A transformation triggers another one if it adds proper-
ties to a program that trigger the other transformation (di-
rectly or indirectly). A transformer triggers another one
if some of its transformations trigger transformations of the
other transformer. Two transformers trigger themselves mu-

tually if each triggers the other one. Note that a transformer
can also trigger itself.

Problem Neither the properties that trigger a transforma-
tion, nor the exact transformations triggered within a trans-
former, are known to the framework in advance. There-
fore the framework cannot determine whether a given set of
transformers trigger themselves mutually. It must always
be prepared for the worst case, that is, for the occurence of
mutual triggering.

Consequences In case of mutual triggering, applying
each transformation only once may result in potentially in-
complete programs, whose “gaps” can be filled only by
repeated application of preceding transformations. There-
fore transformations must be iterated until a fixed point
is reached, that is until no tranformer requests any further
changes.

As an example, consider another transformer, Access,
which extends a class by access methods for each of its
public fields and replaces all direct accesses to these
fields by calls to the generated methods. The result of ap-
plying Access immediately after Counter is illustrated
in Figure 2. The underlining on the right-hand side of the
figure highlights code added by Access that requires a sec-
ond application of Counter.

3.2.2. Order of Transformations

Unfortunately, iterating transformations that have been
composed in different orders yields, in the general case, dif-
ferent fixpoints. This is illustrated in Figure 3.

The left-hand part of the figure continues the example
from Figure 2 by repeatedly applying both transformers in
the same order as before. This ensures that the Counter
transformer is also applied to the methods generated by Ac-
cess in the first iteration (the instruction b counter++
is inserted into the method getB()).



public class C f
public B b = new B();
private int b counter = 0;

public void manipulateB() f
b counter++;
b.doSomething();

g
g

public class C f
public B b = new B();

(1) private int b counter = 0;

(2) public void setB(B b) f
this.b = b;

g
(2) public B getB() f

return this.b;
g

public void manipulateB() f
(1) b counter++;
(2) getB().doSomething();

g
g

Result after application of Counter transformer Result after application of (1) Counter, (2) Access

Figure 2. Applying transformations only once is not enough. The underlined code added by the
Access transformer needs to be processed again by Counter

public class C f
public B b = new B();

(1) private int b counter = 0;

(2) public void setB(B b) f
this.b = b;

g
(2) public B getB() f
(3) b counter++;

return this.b;
g

public void manipulateB() f
(1) b counter++;
(2) getB().doSomething();

g
g

public class C f
public B b = new B();

(2) private int b counter = 0;

(1) public void setB(B b) f
this.b = b;

g
(1) public B getB() f
(2) b counter++;

return this.b;
g

public void manipulateB() f

(1) getB().doSomething();
g

g

(1) Counter, (2) Access, (3) Counter, ... (1) Access, (2) Counter, ...

Figure 3. State after end of second iteration. The results differ depending on the order of transfor-
mations.



The right-hand side shows the result of applying the two
transformers in the reversed order (Access, Counter).

The difference in the final result manisfests itself in
method manipulateB(). With the first ordering, the
body of manipulateB() contains an instruction to in-
crement the counter of field b. With the second ordering,
the direct access to b is replaced by a call to the respec-
tive access method getB() before Counter is activated.
Therefore, the instruction b counter++ is not inserted.
The net effect is that b counter is incremented twice as
often in the left hand side version.

A programmer who compares the two results will im-
mediately identify the right-hand result as the expected one
and thus choose the corresponding ordering. However, the
question at hand is how a suitable ordering could be chosen
automatically by the framework without its having detailed
knowledge about the particular transformers.

3.2.3. Partitioning of Transformations

Besides illustrating this negative result, the previous exam-
ple is apt for another important observation, which leads to
a partial solution. Whereas the resulting method body of
manipulateB is dependent on the order of transforma-
tions, the interfaces of both versions of class C are exactly
the same.

In fact, it can be shown that the result of a well-defined
class of interface transformations is always independent of
the order in which transformations are applied. In partic-
ular, interface transformations that are positively triggered
and monotone provide the guarantee that terminating itera-
tions produce a unique fixpoint.

Positive triggering A transformation is positively trig-
gered, if it can be initiated by the existence of a particu-
lar property of a program, but must not be caused by the
absence of such a property. This intuition is captured in
the definition of “properties”. A property of a program is
any existentially quantified boolean expression that can be
assembled without using negation in the language of JMan-
gler’s analysis API.

Without positive triggering, interface transformations
would be order-dependent. Consider, for instance, a trans-
formation Tneg that adds a method m() if a certain inter-
face I is not implemented by the current class, and another
transformation T that adds I to the list of implemented in-
terfaces. If T is applied first, m() will not be added; other-
wise it will.

Monotonicity In addition, sequences of interface trans-
formations must be monotone. Intuitively, monotonicity
means that transformations can add properties to a program

but never remove properties. As in the case of negative trig-
gering, it is easy to construct examples that show that non-
monotonicity leads to order-dependence.

Note that the notion of “adding” refers to the semantics
of the program, not its syntax. Replacement and removal of
syntactic elements can still produce an extended program.
For instance, a program with a method public m() is
considered an extension of the same program with method
private m().

This example recalls the notion of binary compatibility.
Indeed, monotonic interface transformation sequences are
captured by a partial order on programs that mirrors Java’s
binary compatibility rules.

Partitioning With regard to our original problem state-
ment, this section can be summed up as follows:

� Code transformations cannot be combined automati-
cally (without human assistance) because their seman-
tics are inherently order-dependent.

� Independent development and automatic combination
(without human assistance) is possible for monotonic,
positively triggered interface transformations.

This is the reason why JMangler partitions program
transformations into code transformations and interface
transformations, as described in section 3.1.

3.3. Transformer Configuration

A user who wants to transform a program at load-time
can specify this easily in a configuration file. This file has a
simple XML-based syntax describing

� the set of interface and code transformers to be applied,

� parameters to be passed to the transformers,

� the ordering of code transformers,

� and some other options (debugging, etc.).

Different application-specific transformers can be easily
composed from the same set of basic transformers. Each
composition specification can be stored in a different XML
file. Switching between different configurations just re-
quires providing a different file name as a parameter to the
invocation of JMangler:

jmangler <configFile> <main> <parameters>

This invocation starts the JVM, loads JMangler and the
transformers specified in the configuration file and then ini-
tiates execution of the program to be adapted. As the first
step of the program’s execution, the JVM attempts to load
mainwhich then triggers the transformation process on this
class.



JMangler-FrameworkJava Platform

Execution
Engine

Class Loader
System

Composition
Algorithm

...

Java
Class Files

Interface
Transformers

Code
Transformers

fixpoint
iteration

sequential
execution

Figure 4. JMangler’s Transformation Process

3.4. The Transformation Process

The transformation process is performed on each class
that is loaded. When the transformation is complete, the
transformed version of the class is passed to the execution
engine of the JVM. It is also stored in a buffer of JMan-
gler in order to be available for analysis by transformers of
classes loaded later.

Multi-class transformers either find additional classes
that they need to process in this buffer or they initiate load-
ing of the yet unavailable classes. Thus JMangler always
acts on two sets of classes: the classes that are (waiting for)
being processed and the classes whose transformation has
already been completed.

The distinction between interface and code transforma-
tions is reflected in the transformation process which is par-
titioned into two phases (see Figure 4). In the first phase,
interface transformers are activated. Each interface trans-
former analyzes the classes under consideration, decides
which transformations are to be carried out and requests
these transformations from JMangler. The framework col-
lects the transformation requests of all interface transform-
ers, checks the validity of the requested transformations
(with respect to binary compatibility), chooses the order in
which legal transformations are to be applied, and performs
the transformations. This process is repeated until no fur-
ther interface modification requests are issued. If an illegal
transformation is detected the process is aborted.

In the second phase, only code transformers are acti-
vated. They are executed exactly in the order indicated in
the configuration file. If repetition is needed, it must be
specified explicitly. Each code transformer analyzes the
classes under consideration, decides which transformations
are to be carried out and performs these transformations.

Execution engine

Bootstrap
class loaderJava

Virtual
Machine

Class
ClassLoader

Java
APIs

JMangler

BCA

Application Classes

Application
class loader

JOIE / Javassist
class loader

... ... ... ... ... ...

loaded by

subclasses of

Figure 5. Three ways to hook into Java’s Class
Loader Architecture

3.5. Integration into Java’s Class Loading Architec-
ture

One of the main aims in the design of JMangler was to
hook into the class loading system in a way independent of
the class loader and the JVM.

Java’s class loading mechanism is partitioned be-
tween the JVM and the Java APIs (Figure 5). On
one hand, each platform-specific implementation of the



C D E F
<<delegation>>

<<delegation>>

<<delegation>>

<<delegation>>

Figure 6. A cyclic program structure that requires iteration of interface transformations.

JVM contains a bootstrap class loader, which is re-
sponsible for loading system classes (that is, all classes
that are part of the Java Development Kit and of stan-
dard extensions). On the other hand, the JDK contains
the class java.lang.ClassLoader and subclasses
thereof. ClassLoader is the common superclass of all
class-loaders for application-specific classes. Programmers
can customize the class loading system by writing their own
subclasses of ClassLoader.

In our context, it is also important to understand that
there is no way to let different class loaders simultaneously
process the same copy of a class (file). This is the reason
why applications that need their own specific class loader
cannot be transformed by class loader dependent systems
such as JOIE and Javassist.

The above summary of the class loading system is
enough to explain two essential consequences. Any attempt
to hook into the class loading system by creating an own
subclass of class loader will result in a class loader depen-
dent system. Any attempt to achieve class loader indepen-
dence by modifying the bootstrap class loader necessarily
compromises JVM independence.

JMangler achieves both goals by providing a modified
version of the class ClassLoader. Because the modi-
fied behaviour is enforced for every subclass of Class-
Loader, JMangler is activated whenever an application-
specific class is loaded. However, JMangler still cannot
transform system classes, which are loaded by the bootstrap
class loader.

Figure 5 illustrates the different ways to hook into the
class loading architecture.

4. Applications

During the course of the TAILOR project [13], JMangler
has been employed successfully for an implementation of
LAVA, an extension of the Java Programming Language. In
order to make the LAVA extensions effective for third-party
Java class files, special transformer components undertake
the task of modifying their contents at load-time.

The ability to iterate positively triggered monotonic in-
terface transformations until a fixpoint is reached and to

modify multiple classes consistently during this process has
proven to be an essential feature in the implementation of
LAVA. It effectively allows JMangler to be used as a back
end for the LAVA compiler. This is illustrated with the fol-
lowing, highly simplified example.

One of the steps that LAVA takes to implement object-
based inheritance is to automatically generate local for-
warding methods for each method in the declared type of
specially marked, so-called delegatee fields. For example,
in the following class forwarding methods are generated for
all methods that are included in class D’s interface, since the
declaration of field d includes the modifier delegatee.

public class C f
public delegatee D d;

// if method m is included in D,
// delegatee (roughly) leads to
// generation of the following method

// public void m() f d.m(); g
g

A transformer component, Forward, is responsible for
determination of the accessible methods of the delegatee
field type and the inclusion of appropriate forwarding meth-
ods in the class that contains the delegatee field. However,
this process is complicated by the occurence of cyclic de-
pendencies, as shown in Figure 6.

In this example, there are forwarding relations from D to
C, from D to E, from E to D, and from E to F. Assume that
Forward would try to create forwarding methods for D in
the first step. However, this would not create all necessary
methods, since the methods that are “inherited” from F are
missing in E. If Forward were to first try to modify E,
it would essentially face the same dilemma concerning the
methods of C (not yet) “inherited” by D. This problem can
be solved only by applying Forward repeatedly to each of
the classes involved.

JMangler is able to deal with these types of transforma-
tions. Since Forward is a pure interface transformation,
there are no unwanted side effects resulting from interfer-
ences with transformer components that are responsible for
other features of the LAVA language. For this reason, all



BCA JOIE Javassist JMangler
Integration into the Java Platform
JVM independence – p p p

Class loader independence p – – p

Transformation of system classes p – – –
External configuration p – – p

Expressive Power
Interface transformations p p p p

Code transformations – p (p) p

Preservation of binary compatibility p – p p

Multi-class transformers – – (p) p

Simple transformation language p – – –
Suitability for Component-Oriented Programming
Multiple transformers p p – p

Independent extensibility – – – p

Efficiency p ? ? –

Table 2. Comparison of JMangler to related approaches

interface transformers can be used without knowledge of
implicit dependencies.

5. Related Work

In the following sections we summarize JMangler’s fea-
tures and compare them with the approaches that already
have been described in section 2. The comparison is based
on the forces that we have set forth in section 2.4, and on
other characteristics that have been dealt with in the course
of this paper. Please refer to table 2 for a summary of this
comparison.

Integration into the Java platform Since JMangler is
implemented in pure Java, it is, unlike BCA, independent of
a specific JVM. Unlike JOIE and Javassist, it is class loader
independent (section 3.5). However, it is not able to deal
with classes that are loaded by the bootstrap class loader,
since, for the sake of platform independence, this was not a
viable design choice. While missing universality, JMangler
is still significantly more general than an approach depen-
dent on a class loader. BCA is the only universal approach.

JMangler offers an advanced concept of external config-
uration (section 3.3) that goes beyond the possibilities of
BCA.

Expressive Power The goal of enabling a component-
oriented approach for dealing with independently developed
transformers has called for the distinction of two kinds of
transformers. All approaches, including JMangler, provide
for interface transformations. However, only JMangler is
able to iteratively apply interface transformers in order to

deal with mutual triggers. Arbitrary code transformations
are provided by JOIE and JMangler only. Javassist allows
for a restricted set of code transformations that adhere to its
meta-object model.

JMangler offers support for preservation of binary com-
patibility (section 3.1). Unlike BCA and Javassist, it does so
while still offering arbitrary modifications of Java classes.

Only JMangler is able to take mutual dependencies be-
tween classes into account and transform more than one
class simultaneously by allowing for multi-class transform-
ers.

JMangler does not provide a simple transformation lan-
guage. Instead, we have focused on a general, API-based
approach that can be made available quickly and provides
all of the desirable properties of a transformation framework
except for a simple syntax. Experiences provided by its de-
ployment should help to fine-tune the system’s design and
implementation, leading to a stable and optimized basis for
easy-to-use front-ends.

Suitability for Component-Oriented Programming
BCA, JOIE and JMangler allow multiple transformers
to be applied to the same set of Java classes. However,
only JMangler is independently extensible by providing
an advanced mechanism for dealing with independently
developed interface transformers (section 3.2).

Efficiency JMangler spends significant time and space on
maintaining representations of Java classes during runtime.
BCA clearly has advantages in this area, because it can di-
rectly refer to representations of classes inside the JVM.



(There is no performance data reported in the literature on
JOIE and Javassist.)

Note, however, that the overhead that JMangler incurs
is only present during the transformation process. After
transformation, applications run without any interference
by JMangler – the transformer components may affect the
efficiency of the actual classes, but this is outside of JMan-
gler’s scope.

6. Conclusions and Future Work

Previous approaches for load-time transformation of
Java classes are either dependent on the use of a specific
class loader or dependent on a specific JVM implementa-
tion. This is not due to an inadequacy of the Java platform
but to a wrong choice of the level at which to hook into
the Java Class Loader Architecture. JOIE and Javassist opt
for supplying a class loader that is responsible for transfor-
mations, which excludes their application to many kinds of
programs. BCA modifies a specific implementation of the
JVM. JMangler follows a novel approach by modifying the
base class of the Java class loader hierarchy, thereby enforc-
ing transformations for classes that are loaded by arbitrary
class loaders, except the bootstrap class loader. Therefore,
JMangler cannot transform system classes.

Another important subject of this paper is the suitabil-
ity of the framework for component-oriented programming.
In previous approaches, there were no satisfactory means
to safely combine transformers that had been independently
developed. We have introduced the concept of partition-
ing transformations into interface and code transformations
and have shown that automatic composition is possible for
positively triggered, monotonic interface transformations.
Corresponding transformers can be deployed jointly, even
if developed independently. Only the order of code trans-
formations has to be specified explicitly, since it is essential
for the behavior of the resulting code. Criteria for automatic
composability of code transformations are still an open is-
sue.

Future work also needs to address JMangler’s efficiency.
For example, interface transformer components currently
need to analyze classes in each iteration in order to deter-
mine if anything has changed. This overhead can be re-
duced by supplying detailed trigger events that are fired by
specific types of modifications — for example addition of
fields to a specific class. Interface transformer components
are then only activated for the types of triggers for which
they have registered.

Information on the current state of JMangler can be
found at http://javalab.cs.uni-bonn.de/research/ jmangler/.

6.1. Acknowledgements

The authors thank Tom Arbuckle and the anonymous re-
viewers of the SCAM 2001 program committee for their
critical comments. This work has been performed as part
of the TAILOR project, directed by A. B. Cremers and sup-
ported by Deutsche Forschungsgemeinschaft (DFG) under
grant CR 65/13.

References

[1] Aspect-Oriented Programming Home Page. http://
www.parc.xerox.com/csl/projects/aop/

[2] Shigeru Chiba. Load-Time Structural Reflection in Java. in:
E. Bertino (Ed.). ECOOP 2000 – Object-Oriented Program-
ming Proceedings, 313-336, Springer, LNCS 1850, 2000.

[3] Geoff A. Cohen, Jeffrey S. Chase, and David L. Kaminsky.
Automatic program transformation with JOIE. in: Proceed-
ings of the USENIX 1998 Annual Technical Conference, New
Orleans, Louisiana, USA, 1998. USENIX Association.

[4] Pascal Costanza, Günter Kniesel, and Michael Austermann.
Independent Extensibility for Aspect-Oriented Systems. Ac-
cepted for: Workshop on Advanced Separations of Con-
cerns. ECOOP 2001, Budapest, Hungary, 2001. Available
at http://trese.cs.utwente.nl/Workshops/ecoop01asoc/

[5] Markus Dahm. Byte Code Engineering Library. http://
bcel.sourceforge.net

[6] Li Gong. Inside Java 2 Platform Security. Addison-Wesley,
1999.

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The Java Language Specification, Second Edition. Addison-
Wesley, 2000.

[8] Urs Hölzle. Integrating Independently-Developed Compo-
nents in Object-Oriented Languages. in: O. M. Nierstrasz
(Ed.). ECOOP ’93 – Object-Oriented Programming Pro-
ceedings, 36-56, Springer, LNCS 707, 1993.

[9] Chris Laffra. Jikes Bytecode Toolkit. http://www.alphaworks
.ibm.com/tech/jikesbt.

[10] Han Bok Lee and Benjamin G. Zorn. BIT: A tool for instru-
menting Java bytecodes. in: USENIX Symposium on Internet
Technologies and Systems Proceedings, Monterey, California,
December 8–11, 1997, Berkeley, CA, USA, 1997. USENIX.

[11] Ralph Keller and Urs Hölzle. Binary Component Adaptation.
in: E. Jul (Ed.). ECOOP ’98 – Object-Oriented Program-
ming. Proceedings, 307-329, Springer LNCS 1445, 1998.

[12] Clemens Szyperski. Component Software – Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

[13] The Tailor Project. http://javalab.cs.uni-bonn.de/research
/tailor/


