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Abstract

In Context-oriented Programming (COP), programs can
be partitioned into behavioral variations expressed as
sets of partial program definitions. Such layers can be
activated and deactivated at runtime, depending on the
execution context. In previous work, we identified the need
for application-specific dependencies between layers, and
suggested an efficient reflective interface for controlling
such dependencies. However, that solution requires knowl-
edge about complex low-level details of a particular COP
implementation, which can be hard to master. In this
paper, we show how feature diagrams can be naturally
mapped onto COP by integrating the Feature Description
Language. Since this mapping ensures that feature de-
pendencies are automatically enforced, programmers can
focus on declarative descriptions of layer dependencies
without the need to resort to low-level details.

I. Introduction

In Context-oriented Programming, programs can be
partitioned into behavioral variations, which consist of
partial class and method definitions that can be freely
selected and combined at runtime. This enables programs
to change their behavior according to their context of use.
In [5], we have introduced this idea and have presented
the programming language ContextL, which is our first
language extension that explicitly realizes this vision.

In [7], we have introduced a reflective facility for coor-
dinating and controlling the activation and deactivation of
layers. It enables expressing complex application-defined
dependencies between layers where the activation or deac-
tivation of one layer requires the activation or deactivation
of another one. Despite of the flexibility of that reflective
facility, we have been successful to retain the efficiency
of a previously described implementation technique for

ContextL [6]. However, the implementation of reflective
extensions to ContextL is complex: A programmer has to
define new layer classes, decide which layers are instances
of which layer classes, define methods on the correct
hooks of the reflective API, and understand the interactions
between several such methods.

In this paper, we present a declarative extension for
describing feature expressions and constraints on layers,
based on the Feature Description Language (FDL) [9].
Our adaptation of FDL greatly simplifies expressing depen-
dencies between layers in ContextL: Layer dependencies
can be specified as straightforward feature expressions and
constraints alongside the layer definitions themselves.

II. Feature Dependencies

We illustrate possible dependencies between layers in
Context-oriented Programming with different tariff plans
users of mobile devices, such as PDAs and smartphones,
can choose from. For example, regular phone calls, SMS,
internet connection, and so on, are billed for using different
tariff plans based on time, volume, flat rates, and so
on. Accordingly, there should be means to control the
activation and deactivation of corresponding features: A
user may be interested in blocking the activation of certain
premium features, or switching from one tariff plan to
another without the risk of two tariff plans being active at
the same time. On the other hand, a service operator may
want to ensure that the activation of certain features makes
the selection and activation of a tariff plan mandatory.

A. ContextL in a Nutshell

Layers are the essential extension provided by ContextL
and are a good match to represent such features whose



activation state can be determined only at runtime.1 Layers
can be defined with deflayer, for example like this:

(deflayer phone-call-layer)

Layers have a name, and partial class and method defini-
tions can be added to them. There exists a predefined root
layer that all definitions are automatically placed in when
they do not explicitly name a different layer.

For example, consider the following interface in Con-
textL for making phone calls:

(define-layered-function start-call (nr))
(define-layered-function end-call ())

This defines two generic functions, one taking a phone
number as a parameter and the other one not taking any
parameters. A default implementation for these as yet
abstract functions can be placed in the root layer:

(define-layered-method start-call (nr)
(error "Phone calls inactive."))

(define-layered-method end-call ()
(error "Phone calls inactive."))

Only if the phone-call-layer is active, a user can
actually make phone calls:

(define-layered-method start-call
:in-layer phone-call-layer (nr)
... actual implementation ...)

(define-layered-method end-call
:in-layer phone-call-layer ()
... actual implementation ...)

Layers can be activated in the dynamic scope of a program:

(with-active-layers (phone-call-layer)
... contained code ...)

Dynamically scoped layer activation has the effect that the
layer is only active during execution of the contained code,
including all the code that the contained code calls directly
or indirectly. Layer activation can be nested, which means
that a layer can be activated when it is already active.
However, this effectively means that a layer is always
active only once at a particular point in time, so nested
layer activations are just ignored. This also means that on
return from a dynamically scoped layer activation, a layer’s
activity state depends on whether it was already active
before or not. In other words, dynamically scoped layer ac-
tivation obeys a stack-like discipline. Likewise, layers can
be deactivated with a similar with-inactive-layers
that ensures that a layer is not active during the execution
of some contained code.

1ContextL is an extension to the Common Lisp Object System (CLOS,
[3]), which in turn is based on generic functions instead of the more
wide-spread class-based object model. However, the context-oriented
features of ContextL are conceptually independent of CLOS, and we
have already mapped them to several other languages, including Java
and Smalltalk [11]. ContextL can be downloaded at http://common-
lisp.net/project/closer in the ContextL section.

Multiple layers can contribute to the same layered
functions. For example, a metering layer can determine
the cost of a phone call:

(deflayer phone-tariff-a)

(define-layered-method start-call
:in-layer phone-tariff-a :after (nr)
... record start time ...)

(define-layered-method end-call
:in-layer phone-tariff-a :after ()
... determine cost a ...)

(deflayer phone-tariff-b)

(define-layered-method start-call
:in-layer phone-tariff-b :after (nr)
... record start time ...)

(define-layered-method end-call
:in-layer phone-tariff-b :after ()
... determine cost b ...)

The user can now be asked to select one of the tariffs:

(let ((tariff (ask-user "Select tariff...")))
(if ((equal tariff ’phone-tariff-a)

(with-active-layers (phone-tariff-a)
... ))

((equal tariff ’phone-tariff-b)
(with-active-layers (phone-tariff-b)

... ))
... ))

We can now recast the desire to control feature activation
in more technical terms: The unconditional layer activa-
tion and deactivation constructs could be guarded by if
statements that check whether a layer may be activated
or deactivated, and also whether other layers should be
activated and/or deactivated as a consequence as well.
While technically possible, this has negative implications
for maintainability, understandability, and so on, by scat-
tering such checks throughout a program. The goal of our
work is to avoid such scattering as far as possible.

B. Reflective Layer Activation

In principle, ContextL already provides control of
layer activation and deactivation without polluting a pro-
gram with if statements: Whenever a layer is acti-
vated via with-active-layers (or other layer ac-
tivation constructs), ContextL calls the generic function
adjoin-layer-using-class to determine the ef-
fective ordered set of layers to be active. Likewise,
with-inactive-layers calls the generic function
remove-layer-using-class, also to determine an
effective ordered set of layers to be active. The de-
fault methods on adjoin-layer-using-class and
remove-layer-using-class implement the seman-
tics of layer activation and deactivation as described in
Sect. II-A. Since adjoin-layer-using-class and



remove-layer-using-class are generic, they pro-
vide a reflective interface to ContextL which allows user
programs to define methods for their own layer classes
that control under what circumstances specific layers may
be activated or deactivated, and whether they imply further
activation or deactivation of other layers [7].

There are advantages and disadvantages in the de-
sign of ContextL’s reflective API. On the one hand, it
balances extensibility and performance: With an appro-
priate caching scheme, reflective layer activation is as
efficient as without such a reflective facility [7]. On the
other hand, reflective extensions are very complex: A
programmer has to define layer classes, decide which
layers are instances of which layer classes, define cor-
rect methods on adjoin-layer-using-class and
remove-layer-using-class, and understand the
complex interactions between different such methods.

In other words, while reflective layer activation is an
effective hook for enforcing dependencies between layers,
the actual implementation effort requires knowledge about
too many low-level details. What is needed instead is a
declarative interface at a higher level of abstraction to
express rules for layer activation/deactivation and layer de-
pendencies. At the same time, the advantages of ContextL’s
reflective API, especially in terms of its efficiency, should
be retained as much as possible.

III. Feature Descriptions for ContextL

Context-oriented Programming has a lot in common
with the mixin layers approach of feature-oriented pro-
gramming [16]: Both approaches express program varia-
tions as layers, but in the former they are activated dynam-
ically, and in the latter they are statically composed. An
established approach for expressing feature dependencies
in feature-oriented programming is the use of feature dia-
grams [8], [12], a graphical notation for depicting feature
dependencies. The Feature Description Language (FDL) is
a textual notation for such feature diagrams [9]. Since a
textual notation is more straightforward to carry over to
a Lisp-based language such as Common Lisp, and since
the formalization of FDL in [9] yields precise semantics
for feature diagrams, we have based the subsequently
described extension to ContextL on FDL.

A. Atomic and Composite Features

An FDL description consists of atomic and composite
features. Composite features are defined using a feature
expression language which allows specifying mandatory,
optional, alternative and non-exclusive selections of fea-
tures expressed as all-of, optional, one-of and

more-of respectively.2 Each atomic feature can specify
constraints by requiring or excluding other atomic features.
Moreover, users can define further constraints by uncon-
ditionally including and excluding specific atomic layers.
These constructs are mapped to ContextL as follows.

a) Atomic features: Atomic features are mapped to
atomic layers, which behave mostly like plain layers in
ContextL – they can be activated and deactivated with
dynamic scope. In addition to that, they can require or
exclude the presence of other atomic layers. For example,
we can define the atomic layers phone-tariff-a and
phone-tariff-b as follows:

(define-atomic-layer phone-tariff-a
(:requires phone-call-layer)
(:excludes phone-tariff-b))

(define-atomic-layer phone-tariff-b
(:requires phone-call-layer)
(:excludes phone-tariff-a))

The next fragment shows how we can express mutual
exclusions, but they are internally mapped to exclusion
specifications on atomic layers, as in the example above:

(define-mutual-exclusion
phone-tariff-a
phone-tariff-b
phone-tariff-c)

b) Composite features: Composite features are
mapped to composite layers, which are defined together
with their feature expressions.3 The following example
composite layer definitions correspond to the feature di-
agrams in Fig. 1:

(define-composite-layer phone-tariff
(one-of phone-tariff-a

phone-tariff-b
phone-tariff-c))

(define-composite-layer flat-rate-option
(more-of flat-rate-1 flat-rate-2))

(define-composite-layer internet-tariff
(all-of (one-of phone-tariff-b

phone-tariff-c)
(optional flat-rate-option)))

While atomic layers can refer only to other atomic layers in
their constraints, composite layers can refer to both atomic
and other composite layers in their feature expressions.

In [9], the semantics of feature expressions are defined
using a feature diagram algebra that can be used to auto-
matically transform a feature expression to its disjunctive
normal form (DNF). For example, the algorithm described
in [9] yields the following DNFs for phone-tariff and
internet-tariff:

2In [9], these are expressed as all, ?, one-of and more-of. Non-
exclusive selections are sometime also called “or-features” [8].

3In this paper, we use a notation for feature expressions based on
Lisp-style s-expressions. In [9], a more conventional syntax is used.



phone-tariff

phone-tariff-a phone-tariff-b phone-tariff-c

flat-rate-1 flat-rate-2

internet-tariff

phone-tariff-b phone-tariff-c flat-rate-option

Fig. 1. Example feature diagram

;; phone-tariff
(one-of (all-of phone-tariff-a)

(all-of phone-tariff-b)
(all-of phone-tariff-c))

;; internet-tariff
(one-of (all-of phone-tariff-b)

(all-of phone-tariff-b flat-rate-1)
(all-of phone-tariff-b flat-rate-2)
(all-of phone-tariff-b

flat-rate-1 flat-rate-2)
(all-of phone-tariff-c)
(all-of phone-tariff-c flat-rate-1)
(all-of phone-tariff-c flat-rate-2)
(all-of phone-tariff-c

flat-rate-1 flat-rate-2))

It is important that such DNFs can indeed be automatically
and unambiguously determined, because they yield all
valid feature alternatives that satisfy the respective feature
expression. This makes FDL’s feature diagram algebra
suitable for automatic validity checks.

c) Constraints: There is no direct mapping
of user constraints (unconditional inclusion and
exclusion of specific atomic features) from FDL to
ContextL. Instead, atomic layers can be activated
and deactivated just like plain layers in ContextL,
either directly, for example by mentioning them
in invocations of with-active-layers and
with-inactive-layers, or indirectly via activations
and deactivations of composite layers (see below).

Diagram constraints are checked whenever atomic
layers are activated or deactivated. If a constraint is
not met, an error is signalled at runtime. For exam-
ple, none of phone-tariff-a, phone-tariff-b
or phone-tariff-c can ever be activated unless
phone-call-layer is already active as well, since
phone-call-layer is required by all former layers.
Likewise, none of the three atomic phone tariff layers can
be activated when another one is already active due to the
mutual exclusion between those three layers.

Since errors in Common Lisp are resumable [15],
signalling them here allows users or programmers to inter-

Fig. 2. Interactive resolution of dynamic con-
straint conflicts.

actively fulfil unmet constraints, and subsequently continue
execution of a running program. For that purpose, Con-
textL provides additional information about a constraint
conflict along with the error. For example, a program could
present a dialog box like the one in Fig. 2 to allow the user
to resolve such a conflict.

B. Activation of Composite Layers

Activation of composite layers (via with-active-
composite-layer, see Sect. III-D) is performed in
three steps:

1) The disjunctive normal form of a composite layer’s
feature expression is determined.

2) The possible feature alternatives described by the
DNF are checked against the constraints imposed
by both the currently active atomic layers and the
atomic layers of each feature alternative.

3) From the remaining set of acceptable feature alter-
natives, one is selected, and the respective atomic
layers are activated, as described above.

The DNF of a composite layer’s feature expression can
be statically determined, so the result of Step 1 can be
cached for each composite layer. Step 2 requires dynamic
checks in the general case, since the concrete constraints
which need to be checked depend on the dynamic set of
currently active layers. Only if these checks unambigu-
ously yield exactly one feature alternative, the results of
Step 2 can be cached as well.



Fig. 3. Interactive selection from multiple fea-
ture alternatives.

In Step 3, three cases need to be covered: Either
the set of acceptable feature alternatives is empty, con-
tains exactly one alternative, or contains many possible
alternatives. In case there are no acceptable feature al-
ternatives, a resumable error is signalled at runtime. In
case there is exactly one acceptable feature alternative,
it is selected and the respective atomic layers are acti-
vated. For example, if Step 1 yields (one-of (all-of
phone-tariff-a)), and none of the current con-
straints prevents phone-tariff-a from being activated
in Step 2, it will indeed be activated in Step 3.

If multiple feature alternatives are acceptable in Step 3,
a resumable error signals the ambiguity, and the different
acceptable feature alternatives are provided as possible
restarts, which can be selected to continue execution of
the interrupted program. For example, a program could
present a dialog box like the one in Fig. 3.

C. Deactivation of Composite Layers

In feature diagrams, there is no notion of expressing
the exclusion of specific composite features, for example
as user-defined constraints. Feature diagrams are primarily
designed for static selection and composition of software
features, not for dynamic activation and deactivation, so
the primary purpose of composite features is to enable the
positive selection of consistent sets of features.

It could be envisioned that, for example, the ex-
clusion of phone-tariff requires the exclusion of
all of phone-tariff-a, phone-tariff-b and
phone-tariff-c, since as soon as one of them
is active, the feature expression of phone-tariff
is fulfilled. However, what does it mean to deactivate
internet-tariff? Is it sufficient if only one of the
all-of branches is not fulfilled? How do we treat the
embedded optional feature under that circumstance?

The deactivation of a composite layer actually only
makes sense if it has been activated before and is thus
currently active. This gives us a handle on providing useful
semantics for the deactivation of composite layers (via
with-inactive-composite-layer, Sect. III-D):

Whenever a composite layer is activated and the atomic
layers of a specific, unambiguosly or interactively deter-
mined feature alternative are activated as a consequence,
that set of atomic layers is recorded for later deactivation
of the same composite layer. Recall from Sect. II-A that
the activation of an already active layer is ignored. Thus
whenever an active composite layer is deactivated, the set
of atomic layers selected by an active composite layer is
unambiguous for the current dynamic scope.

For example, assume that the composite layer inter-
net-tariff is activated and that the feature alterna-
tive consisting of the atomic layers phone-tariff-b
and flat-rate-1 is selected for activation. When
internet-tariff is deactivated subsequently, pho-
ne-tariff-b and flat-rate-1 will be deactivated
as a consequence.

Assume again that internet-tariff and thus
phone-tariff-b and flat-rate-1 have been se-
lected for activation. Subsequent activation of the com-
posite layer phone-tariff leads to activation of the
atomic layer phone-tariff-b, which is silently ig-
nored (see Sect. II-A).4 However, we have to record
the number of activations of atomic layers, since
phone-tariff-b is now present due to both phone-
tariff and internet-tariff. This means that
whenever only one of those composite layers is deacti-
vated, phone-tariff-b must remain active to sustain
the other. Only if both composite layers are deactivated, the
activation count for phone-tariff-b drops to zero, and
that layer can thus be deactivated as well as a consequence.
Since layers are always active at most once in ContextL,
such a simple reference counting scheme is sufficient to
keep active composite layers consistent.

D. Implementation

We have implemented feature descriptions for ContextL
as a straightforward extension on top of its reflective API.
Atomic layers and composite layers are provided as new
layer classes. Activation and deactivation of atomic layers
require additional checks against constraints, but since for
specific sets of active layers, the outcome of such checks is
always the same, ContextL’s provisions for caching active
layer contexts can be exploited [6], [7].

Composite layers are prevented from being activated
or deactivated directly. Instead, we have provided two
new macros with-active-composite-layer and
with-inactive-composite-layer which perform
the three steps for composite layer activation described
in Sect. III-B and the deactivation of previously selected

4The layers phone-tariff-a and phone-tariff-c are not
acceptable under this circumstance because they are excluded by the
presence of the already active phone-tariff-b.



atomic layers described in Sect. III-C. The disjunctive nor-
mal forms of feature expressions are cached per composite
layer. The result of Step 2 of composite layer activation can
be cached in case there is exactly one acceptable feature
alternative, but we have not implemented such caching yet.

IV. Related Work

Feature-oriented, aspect-oriented and context-oriented
programming share the goal to modularize otherwise po-
tentially crosscuting features of a software system, whether
they are represented as layers, aspects, or otherwise. In
feature-oriented programming, for example, the notion of
mixin layers [16] is one approach that allows expressing
features as sets of partial class definitions. Such layers can
then be selected and composed at compile time. Indeed,
the focus of feature-oriented programming lies on static
composition and, more recently, on tools for statically
analyzing the validity of statically composed systems [1].
However, it has been recently stressed that more dynamic
approaches are needed as well [13].

Aspect-oriented technologies approaching the context-
oriented notion of dynamically scoped activation of partial
program definitions are AspectS [10], LasagneJ [18], Cae-
sarJ [14], and Steamloom [4]. They all add constructs for
dynamically scoped activation of partial program defini-
tions, but are limited with regard to when and where such
activations can occur, and whether they can be deactivated
again. Other aspect-oriented approaches can express con-
ditions under which a given aspect is applicable or not
using if and cflow-style pointcuts, but these conditions
can typically only be expressed at the aspect level [17].

V. Summary and Future Work

This paper introduces a declarative extension on top
of ContextL’s reflective API for describing feature ex-
pressions associated with composite layers and constraints
between atomic layers. This extension is based on FDL [9],
and our integration of FDL retains most of the advantages
of ContextL’s reflective facility with regard to flexibility
and efficiency we have previously described [7].

Future work includes static analysis of feature descrip-
tions for COP, including control flow analysis to predict
potential contradictions or ambiguities in feature expres-
sions. As described in [9], FDL allows specification of de-
fault features in alternative and non-exclusive selections of
features to steer the selection of feature alternatives in case
of ambiguities. We plan to explore how well this translates
to the dynamic activation and deactivation of composite
layers. We also need to measure the effect of composite
layer activation and deactivation on performance in detail.

Especially, each activation and deactivation of a composite
layer requires a check against the constraints of currently
active layers, which is an NP-complete problem in the
general case [2]. We plan to investigate how techniques
based on static analysis and partial evaluation, among
others, can increase efficiency here.
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