
Reflective Layer Activation in ContextL

Pascal Costanza
Programming Technology Lab

Vrije Universiteit Brussel
B-1050 Brussels, Belgium

pascal.costanza@vub.ac.be

Robert Hirschfeld
Hasso-Plattner-Institut
Universität Potsdam

D-14482 Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
Expressing layer dependencies in Context-oriented Program-
ming is cumbersome because until now no facility has been
introduced to control the activation and deactivation of lay-
ers. This paper presents a novel reflective interface that
provides such control without compromising efficiency. This
allows expressing complex application-defined dependencies
between layers where the activation or deactivation of a layer
requires the activation or deactivation of another one. The
activation or deactivation of specific layers can also be pro-
hibited based on application-defined conditions.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Object-oriented
Programming ; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

Keywords
Context-oriented Programming, dynamic layer activation,
layer combination, software composition

1. INTRODUCTION
In Context-oriented Programming, programs consist of

partial class and method definitions that can be freely se-
lected and combined at runtime to enable programs to change
their behavior according to their context of use. In [4], we
have introduced this idea and have presented the program-
ming language ContextL which is among the first language
extensions that explicitly realize this vision. As a motivating
example in that paper, we have illustrated an alternative im-
plementation of the model-view-controller framework that
avoids any secondary non-domain classes and thus increases
understandability and flexibility at the same time.

Context-oriented Programming encourages continually
changing behavior of programs and employs repeated changes
to class and method definitions at runtime. We have illus-
trated this in [5] by demonstrating a context-oriented im-

c© ACM, 2007. This is the authors’ version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2007 ACM Sympo-
sium on Applied Computing, http://doi.acm.org/10.1145/1244002.1244279

plementation of a figure editor, an example typically used
to motivate aspect-oriented programming [20]. We have also
discussed an efficient implementation strategy in that paper,
and have used the figure editor example as a benchmark to
show that a program with repeated activations and deacti-
vations of layers is about as efficient as one without.

Until now, a facility for coordinating and controlling the
activation and deactivation of layers is lacking. For example,
it is not possible to prohibit the activation of an inactive
layer, or vice versa the deactivation of an active layer. It
is also not possible to express dependencies between layers,
for example that the activation or deactivation of one layer
requires the activation or deactivation of another.

The contribution of this paper is the introduction of a
novel reflective facility in ContextL that allows expressing
such dependencies, the illustration of this facility with some
example scenarios, and the discussion of its interface that
balances flexibility and efficiency.

2. FEATURE DEPENDENCIES
To illustrate some possible dependencies between layers in

Context-oriented Programming, we sketch a number of ser-
vices that may be provided on mobile devices, such as PDAs
or smartphones, and that may depend on each other. Apart
from regular applications, like word processors, spread sheets
or calculators, such a device may provide the features to
make phone calls, connect to a wireless network, use a short-
messaging service (SMS), and so on. Some of these features
depend on dynamic properties, like the presence of a wireless
network card, the availability of actual network connectiv-
ity, and a contract between the user and a network operator.
Furthermore, users need to pay for many of these features.
For example, regular phone calls are billed for using differ-
ent tariff plans based on time, volume, flat rates, and so on.
Accordingly, there should be means to control the activation
and deactivation of such features: A user may be interested
in blocking the activation of certain premium features, or
switching from one tariff plan to another without the risk of
two tariff plans being active at the same time, and a service
operator may be interested in ensuring that the activation
of certain features makes the selection and activation of a
tariff plan mandatory.

2.1 ContextL in a Nutshell
Layers in Context-oriented Programming are a good match

to represent these features whose activation state can only
be determined dynamically. In the following, we base our
discussion on ContextL, one of the first programming lan-



guage extensions that explicitly support a context-oriented
programming style [4]. It is an extension to the Common
Lisp Object System (CLOS, [2]), which in turn is based on
the notion of generic functions instead of the more wide-
spread class-based object model. However, the context-
oriented features of ContextL are conceptually independent
of the CLOS object model, and a mapping of ContextL fea-
tures to a hypothetical Java-style language extension called
ContextJ has been described in [5].1

Layers are the essential extension provided by ContextL
on which all subsequent features of ContextL are based.
Layers can be defined with the deflayer construct, for ex-
ample like this.

(deflayer phone-call-layer)

Layers have a name, and partial class and method definitions
can be added to them. There exists a predefined root or
default layer that all definitions are automatically placed in
when they do not explicitly name a different layer.

For example, consider the following interface in ContextL
for making phone calls.

(define-layered-function start-phone-call (number))

(define-layered-function end-phone-call ())

This defines two generic functions, one taking a phone num-
ber as a parameter and the other not taking any parameters.
A default implementation for these as yet abstract functions
can be placed in the root layer.

(define-layered-method start-phone-call (number)

(error "Phone calls inactive on this device."))

(define-layered-method end-phone-call ()

(error "Phone calls inactive on this device."))

Only if the phone-call-layer is active, a user can actually
make phone calls.

(define-layered-method start-phone-call

:in-layer phone-call-layer (number)

... actual implementation ...)

(define-layered-method end-phone-call

:in-layer phone-call-layer ()

... actual implementation ...)

Layers can be activated in the dynamic scope of a pro-
gram.

(with-active-layers (phone-call-layer)

... contained code ...)

Dynamically scoped layer activation has the effect that
the layer is only active during execution of the contained
code, including all the code that the contained code calls di-
rectly or indirectly. Layer activation can be nested, which
means that a layer can be activated when it is already ac-
tive. However, this effectively means that a layer is always
active only once at a particular point in time, so nested layer
activations are just ignored. This also means that on return
from a dynamically scoped layer activation, a layer’s activ-
ity state depends on whether it was already active before

1ContextL can be downloaded from the ContextL section at
http://common-lisp.net/project/closer.

or not. In other words, dynamically scoped layer activation
obeys a stack-like discipline.

Likewise, layers can be deactivated with a similar con-
struct with-inactive-layers that ensures that a layer is
not active during the execution of some contained code, and
that has no effect when that layer is already inactive. Again,
on return from a layer deactivation, a layer’s activity state
depends on whether it was active before or not.

Furthermore in multithreaded Common Lisp implementa-
tions, dynamically scoped layer activation and deactivation
only activates and deactivates layers for the currently run-
ning thread. If a layer is active or inactive in some other
thread, it will remain so unless it is incidentally also acti-
vated or deactivated in that thread.

Multiple layers can contribute to the same layered func-
tions. For example, a metering layer can determine the cost
of a phone call.

(deflayer phone-tariff-a)

(define-layered-method start-phone-call

:in-layer phone-tariff-a :after (number)

... record start time ...)

(define-layered-method end-phone-call

:in-layer phone-tariff-a :after (number)

... record end time & determine cost a ...)

(deflayer phone-tariff-b)

(define-layered-method start-phone-call

:in-layer phone-tariff-b :after (number)

... record start time ...)

(define-layered-method end-phone-call

:in-layer phone-tariff-b :after (number)

... record end time & determine cost b ...)

We can now recast the desire to control feature activation
in more technical terms: The unconditional layer activation
and deactivation constructs could be guarded by appropri-
ate if statements that check whether a layer must be acti-
vated or deactivated, and/or whether other layers should be
activated and/or deactivated as a consequence. While tech-
nically possible, this has negative implications for maintain-
ability, understandability, etc., by scattering these checks
throughout a program.

2.2 Layer Inheritance
A straigtforward extension to ContextL is to allow for

inheritance between layers, similar to class inheritance in
object-oriented programming. For instance, the latter two
layers phone-tariff-a and phone-tariff-b have duplicate
code, and it is possible to share such code.

(deflayer phone-tariff)

(define-layered-method start-phone-call

:in-layer phone-tariff :after (number)

... record start time ...)

(deflayer phone-tariff-a (phone-tariff))

(deflayer phone-tariff-b (phone-tariff))



In this way, the code for start-phone-call does not need
to be replicated. Only the code for end-phone-call con-
taining details of the actual tariff plan must be provided
separately. Note that the activation of an actual tariff, for
example phone-tariff-a, implies that phone-tariff is also
active.

Unfortunately, layer inheritance is not sufficient for ex-
pressing more interesting layer dependencies. For example,
activation of the phone-call-layer may require applica-
tion of one of the phone tariffs, without being specific about
which actual one to apply.

3. REFLECTIVE LAYER ACTIVATION
Computational reflection provides programs with the abil-

ity to inspect and change data and functions at the meta-
level that represent and execute them [17]. The ability to in-
spect the program state is called introspection and the abil-
ity to change the behavior is called intercession. A metaob-
ject protocol (MOP) organizes the meta-level entities such
that applications can extend them in an object-oriented style
[11]. For example, there exists a specification of a metaob-
ject protocol for the Common Lisp Object System (CLOS
MOP) that is expressed in terms of CLOS itself, that is in
terms of classes, generic functions and methods [10].

3.1 Intercession of Layer Activations
In terms of computational reflection, intercession of layer

activation and deactivation is needed to be able to con-
trol them. In ContextL, this is achieved by implement-
ing layer activation and deactivation through the functions
adjoin-layer-using-class and remove-layer-using-class,
following the CLOS MOP approach of using (meta)classes
to determine the applicability of methods to meta-level en-
tities. Additionally, these two functions are themselves lay-
ered such that layer activation and deactivation can be con-
trolled by other layers. The interface of these functions is
as follows.

(define-layered-function

adjoin-layer-using-class (layer active-layers))

(define-layered-function

remove-layer-using-class (layer active-layers))

Both functions take a representation of the layer that is
about to be activated or deactivated respectively, and a rep-
resentation of the currently active layers. Whenever a layer
is activated via with-active-layers (or other layer activa-
tion constructs), ContextL calls adjoin-layer-using-class
to determine the effective ordered set of layers to be active.
Its default implementation returns a set according to the
semantics of with-active-layers in Sect. 2.1. Likewise,
with-inactive-layers calls remove-layer-using-class to
determine the effective ordered set of layers to be active, and
its default implementation returns a set according to the se-
mantics of with-inactive-layers in Sect. 2.1. There is
no corresponding call for implicit deactivations/activations
of layers at the end of with-active-layer/with-inactive-
layer blocks.

Note that these functions do not cause layer activation/de-
activation themselves, but only return effective ordered sets
of layers to be active, without any side effects. In this way,
ContextL provides a clear separation between determining
effective sets of layers and their actual activation.

3.2 Meta-Level Representations
In the following, we discuss meta-level representations of

layers and sets of active layers.
Layers At the meta level, a layer is represented as a CLOS

metaobject. By default, layer metaobjects are instances of
the metaclass standard-layer-class. ContextL applica-
tions can define their own subclasses of standard-layer-

class. For example, the phone-call-layer can be an in-
stance of the application-defined managed-layer-class.

(defclass managed-layer-class

(standard-layer-class) ;; super class

()) ;; no slot/field definitions

(deflayer phone-call-layer () ;; no super layers

() ;; no layer-specific slots/fields

(:metaclass managed-layer-class))

Blocking layer activation This managed-layer-class al-
lows restricting methods on adjoin-layer-using-class and
remove-layer-using-class to managed layers, as in the fol-
lowing two method definitions.

(deflayer block-managed-layers)

(define-layered-method

adjoin-layer-using-class

:in-layer block-managed-layers :before

((layer managed-layer-class) active-layers)

(error "Layer is blocked!"))

(deflayer interactive-managed-layers)

(define-layered-method

adjoin-layer-using-class

:in-layer interactive-managed-layers :before

((layer managed-layer-class) active-layers)

(if (not (ask-user "Activate layer ... ?"))

(error "Layer is blocked.")))

An application can now choose to either block managed
layers completely, or interactively ask the user to allow or
disallow activation of managed layers, by enabling one of
these two layers. Here, applications can use the function
layer-name to determine the name of a layer metaobject and
thus present more useful information to the user. More in-
trospective data can be provided in subclasses of standard-
layer-class.

Active layers The representation of the ordered set of cur-
rently active layers is not further specified. However, the
function layer-active-p can be used to determine whether
a given layer is a member of a given set of active layers
or not. For example, we can now introduce a layer meta-
class tariff-base-layer-class that we can use to define
the base class for tariffs.

(defclass tariff-base-layer-class

(standard-layer-class) ;; super class

()) ;; no slots/fields

(deflayer phone-tariff () ;; no super layers

() ;; no layer-specific slots/fields

(:metaclass tariff-base-layer-class))

Now we can define a method on adjoin-layer-using-

class that triggers the selection of an actual tariff whenever
the phone-tariff layer is activated.



(define-layered-method

adjoin-layer-using-class

((layer tariff-base-layer-class) active-layers)

(if (layer-active-p ’phone-tariff active-layers)

active-layers

(let ((tariff (ask-user "Select tariff ...")))

(adjoin-layer tariff active-layers))))

In this case, the new method overrides the default layer
activation behavior, so the base layer phone-tariff is actu-
ally never directly activated itself. Instead, it is first checked
whether a phone tariff is already active, and if that is the
case, all further activation is skipped. Since all actual phone
tariffs inherit from phone-tariff, the test whether some
phone tariff is active can indeed be performed on the base
phone-tariff layer.

The function adjoin-layer used in this example takes
a layer name and a set of active layers, and in turn calls
adjoin-layer-using-class with the layer represented as a
metaobject. So here it is important that the actual tariffs are
not instances of tariff-base-layer-class. Not providing
a :metaclass in the definition of those layers is sufficient
because the metaclass of a layer is not inherited from any
of its super layers, but is always standard-layer-class by
default unless explicitly specified otherwise.

Layers requiring other layers It is now possible to define a
method for activation of the phone-layer that also activates
phone-tariff. The selection and activation of an actual
phone tariff is thus implicitly triggered.

(define-layered-method

adjoin-layer-using-class

((layer managed-layer-class) active-layers)

(adjoin-layer

’phone-tariff

(call-next-layered-method layer active-layers)))

This definition performs a super call via call-next-layered-

method and additionally activates the phone-tariff layer.
Mutually exclusive layers Another layer metaclass for ac-

tual phone tariffs allows us to switch between different tar-
iffs.

(defclass tariff-layer-class (standard-layer-class)

())

(deflayer phone-tariff-a (phone-tariff)

()

(:metaclass tariff-layer-class))

(deflayer phone-tariff-b (phone-tariff)

()

(:metaclass tariff-layer-class))

Now we can define a method on adjoin-layer-using-

class that ensures that a switch to a different phone tariff
deactivates any other tariffs currently active.

(define-layered-method

adjoin-layer-using-class

((layer tariff-layer-class) active-layers)

(call-next-layered-method

layer

(remove-layer ’phone-tariff active-layers)))

This definition simply performs a super call and modifies
the set of active layers such that any layers derived from

phone-tariff are deactivated.2 In another implementation,
attempts to switch tariffs could as well be simply rejected.

Likewise, we can control the deactivation of tariffs.

(define-layered-method

remove-layer-using-class

((layer tariff-layer-class) active-layers)

(let ((new-tariff (ask-user "Select tariff ...")))

(adjoin-layer

new-tariff

(call-next-layered-method

layer active-layers))))

Again, a deactivation of tariffs could be rejected in an
alternative implementation.

To summarize, we have illustrated the following cases of
how to control activation/deactivation of layers:

• Conditional or unconditional blocking of layers.

• Activation of a layer requires activation of another.

• Activation of a layer requires deactivation of another.

It should be clear by now that similar effects can be achie-
ved for layer deactivation as well (that is, blocking of layer
deactivation and layer deactivation requiring activation/de-
activation of other layers).

4. EFFICIENCY CONSIDERATIONS
In [5], we have presented an implementation strategy for

ContextL, and a benchmark in which a layer is repeatedly
activated and deactivated again illustrates its efficiency. Com-
pared to an execution of the same benchmark without any
layer activation or deactivation, the overhead in runtime
ranges from very moderate 2.72% to still reasonable 12.36%
across four different Common Lisp implementations. In two
other Common Lisp implementations, the runs with layer
activations and deactivations are actually 6.13% and 7.29%
faster than the ones without, indicating that factors beyond
layer activation and deactivation play a more important role
for the overall performance.

This efficiency is achieved because multiple active layers
are always represented by exactly one metaobject – the set
of active layers mentioned in the previous section. In our
implementation described in [5], computational overhead oc-
curs exclusively on the first activation/deactivation of a pre-
viously unused combination of layers and on the first mes-
sage send in a previously unused combination of methods.
After that, both lookups of layer combinations and method
dispatches take advantage of highly efficient caches.

The reflective extension of ContextL discussed in this pa-
per so far seems to inhibit the first optimization that speeds
up the lookup of layer combinations: Each layer activation
and deactivation has to go through the functions adjoin-

layer-using-class and remove-layer-using-class respec-
tively. Indeed, caching the results of these function calls
seems to contradict their intention in some cases. For exam-
ple, the user should be asked each time an attempt is made
to activate, say, the phone-call-layer in the previous sec-
tion when interactive blocking of layers is asked for, while

2This invocation of remove-layer internally calls
remove-layer-using-class, taking further specializa-
tions into account.



Implementation Without Layers With Layers Overhead
Allegro CL 8.0 2.544 secs 2.650 secs 4.17% slower
CMUCL 19c 0.77 secs 0.744 secs 3.49% faster
LispWorks 4.4.6 3.128 secs 3.2374 secs 3.50% slower
MCL 5.1 2.187 secs 2.4358 secs 11.38% slower
OpenMCL 1.0 2.3788 secs 2.5938 secs 9.04% slower
SBCL 0.9.16 0.9138 secs 0.8708 secs 4.94% faster

Figure 1: The results of running the example from [5] in the new version of ContextL.

the unconditional blocking of such managed layers could
still be cached as before. This illustrates why the results of
adjoin-layer-using-class and remove-layer-using-class

can only be cached according to domain-specific criteria.
To resolve these conflicting requirements, we slightly change

the interface of these two reflective functions and require
them to return two values: The first value represents the
ordered set of all new active layers and the second return
value is either true, indicating that this new combination
of layers can be cached and reused for the same set of ac-
tive layers, or otherwise it is false, indicating that the result
must not be cached but that adjoin-layer-using-class

or remove-layer-using-class must be called again for the
same set of active layers. The default implementations of
these two functions always return true as the second return
value because the default semantics always allow caching,
but application-defined methods may freely choose to return
either true or false.

This means that, for example, the two variations of layer
blocking can be implemented as follows.3

(define-layered-method

adjoin-layer-using-class

:in-layer block-managed-layers

((layer managed-layer-class) active-layers)

;; Just return the already active layers

;; and ensure that this result is cached.

(values active-layers t))

(define-layered-method

adjoin-layer-using-class

:in-layer interactive-managed-layers

((layer managed-layer-class) active-layers)

(values

(if (ask-user "Activate layer ... ?")

(call-next-layered-method layer active-layers)

active-layers)

;; In both cases, the result may not be cached.

nil))

As a confirmation that this implementation strategy is in-
deed successful at maintaining efficiency comparable to that
already reported before, we have extended the implemen-
tation of ContextL with reflective layer activation based on
the interface described in this section. We have then run

3Common Lisp provides the values construct to return
more than one value from a function that can be received
from a function call via multiple-value-bind. An approx-
imation of the semantics of multiple values is that they are
boxed in a compound data structure when returned and un-
boxed again at the call site, except that a more efficient
implementation is possible by internally making use of mul-
tiple return slots on the call stack.

the benchmark from [5] again, and the results of the various
runs on different Common Lisp implementations are pre-
sented in Fig. 1. As in [5], the entries in Fig. 1 are average
measurements of five runs. The platform on which we have
executed the benchmark is an Apple Powerbook 1.67 GHz
PowerPC G4 running Mac OS X 10.4.7. The overheads are
in the same range as the ones reported in [5] based on the
previous non-reflective implementation of ContextL, rang-
ing from 3.5% in LispWorks for Macintosh to 11.38% in
Macintosh Common Lisp (MCL). The same two implemen-
tations as in [5] show the anomaly again that the runs that
repeatedly switch layers on and off are actually faster than
the runs without layers: On CMUCL 19c, the runs with-
out layers are on average 3.49% slower, and on SBCL 0.9.16
they are 4.94% slower. See [5] for more details about this
benchmark.

To summarize, reflective layer activation can indeed be
implemented without inhibiting performance. Only when
methods on adjoin-layer-using-class and remove-layer-

using-class request not to cache their results, an overhead
will be repeatedly incurred that depends on the actual com-
putation performed by these methods.

5. DISCUSSION AND FUTURE WORK
Aspect-oriented technologies approaching the context-ori-

ented notion of dynamically scoped activation of partial
program definitions are AspectS [7, 8], LasagneJ [21], Cae-
sarJ [12], and Steamloom [3]. They all add constructs for
thread-local activation of partial program definitions at the
application level. However, CaesarJ does not provide a cor-
responding thread-local deactivation construct, and Lasag-
neJ restricts the use of thread-local activation to the main

method of a Java program [13]. Their lack of thread-local
deactivation constructs makes cflow-style constructs neces-
sary, for example to implement the figure editor example
[5]. Here, Context-oriented Programming allows a modular
implementation without using AOP-style pointcuts. Global
activation/deactivation constructs, like in CaesarJ and Ob-
jectTeams [22] are not sufficient in this regard. Steamloom
provides undeployment of thread-local aspects, but cannot
thread-locally undeploy a globally active aspect.

Delegation layers, as in the prototype-based languages
Slate [15] and Us [18] and also combined into a class-based
programming language in [14], are very similar to Context-
oriented Programming. As layers in ContextL, delegation
layers group behavior for sets of objects [15, 18] or sets of
classes [14]. However, the hierarchy of layers is globally fixed
in [14]. One can select a layer in which to send a specific
message, but all subsequent layers are predetermined by the
original configuration of layers. In [15] and [18], the selec-
tion and ordering of layers is not fixed but layers can be ar-



bitrarily recombined in the control flow of a program. How-
ever, layer selection and combination has to be done man-
ually, there are no dedicated layer activation/deactivation
constructs like in ContextL. Providing these constructs as
high-level abstractions allows for less straightforward, but
more efficient implementation strategies, and adding reflec-
tive layer activation as shown in this paper.

Aspect-oriented approaches can express conditions under
which a given aspect is applicable or not, but these condi-
tions can typically only be expressed at the aspect level and
thus have a static, fixed nature [19]. Reflective layer activa-
tion allows checking for more flexible conditions while keep-
ing the advantage of being able to activate/deactivate layers
in a straightforward way anywhere in a program. We have
shown several examples in this paper to illustrate this flexi-
bility. In spite of this flexibility, we have also been able to de-
sign an interface for reflective layer activation that allows for
an efficient implementation. Depending on domain-specific
criteria, application-defined extensions of layer activation/de-
activation can indicate whether the resulting layer combina-
tion may be cached or not, thus taking advantage of the
efficient implementation strategy discussed in [5] when ap-
plicable, and only incurring a runtime overhead when nec-
essary.

The major downside of reflective layer activation is that
the implementation of reflective extensions is complex: A
programmer has to define layer metaclasses, decide which
layers are instances of which layer metaclasses, define meth-
ods on adjoin-layer-using-class and remove-layer-us-

ing-class correctly, and understand the interactions be-
tween different such methods. What is needed in the long
run is a declarative interface at a higher level of abstraction
to express rules for layer activation/deactivation and layer
dependencies.

Context-oriented Programming is related to the mixin lay-
ers approach [16] of feature-oriented programming [1], and
an established approach for expressing feature dependencies
in that field are feature diagrams [6, 9]. We are currently
working on how to adapt them to express dynamic depen-
dencies between context-oriented layers.

Acknowledgements
We thank Nick Bourner, Johan Brichau, Drew Crampsie,
Brecht Desmet, Attila Lendvai, and Igor Plekhov for fruitful
discussions and valuable contributions.

6. REFERENCES
[1] D. Batory and A. Rauschmayer. Scaling Step-Wise

Refinement. IEEE Transactions on Software
Engineering, June 2004.

[2] D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G.
Kiczales, D. Moon. Common Lisp Object System
Specification. Lisp and Symbolic Computation 1, 3-4
(January 1989), 245-394.

[3] C. Bockisch, M. Haupt, M. Mezini, K. Ostermann.
Virtual Machine Support for Dynamic Join Points.
AOSD 2004, Proceedings, ACM Press.

[4] P. Costanza and R. Hirschfeld. Language Constructs
for Context-oriented Programming. ACM Dynamic
Languages Symposium 2005. Proceedings, ACM Press.

[5] P. Costanza, R. Hirschfeld, and W. De Meuter.
Efficient Layer Activation for Switching
Context-dependent Behavior. Joint Modular
Languages Conference 2006, Proceedings, Springer
LNCS.

[6] K. Czarnecki and U. Eisenecker. Generative
Programming. Addison-Wesley, 2000.

[7] R. Hirschfeld. AspectS – Aspect-Oriented
Programming with Squeak. Objects, Compononts,
Architectures, Services, and Applications for a
Networked World, Springer LNCS, 2003.

[8] R. Hirschfeld and P. Costanza. Extending Advice
Activation in AspectS. EIWAS 2005.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A.
S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[10] G. Kiczales, J. des Rivières, D. Bobrow. The Art of
the Metaobject Protocol. MIT Press, 1991.

[11] P. Maes. Computational Reflection. Ph.D. thesis, Vrije
Universiteit Brussel, 1987.

[12] M. Mezini and K. Ostermann. Conquering Aspects
with Caesar. AOSD 2003. Proceedings, ACM Press.

[13] A. Moors, J. Smans, E. Truyen, F. Piessens, W.
Joosen. Safe language support for feature composition
through feature-based dispatch. 2nd Workshop on
Managing Variabilities Consistently in Design and
Code, OOPSLA 2005.

[14] K. Ostermann. Dynamically Composable
Collaborations with Delegation Layers. ECOOP 2002,
Proceedings, Springer LNCS.

[15] L. Salzman and J. Aldrich. Prototypes with Multiple
Dispatch: An Expressive and Dynamic Object Model.
ECOOP 2005, Proceedings, Springer LNCS.

[16] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Design. ACM
Transactions on Software Engineering and
Methodology, March 2002.

[17] B. Smith. Procedural Reflection in Programming
Languages. Ph.D. thesis, Massachusetts Institute of
Technology, 1982.

[18] R. Smith and D. Ungar. A Simple and Unifying
Approach to Subjective Objects. Theory and Practice
of Object Systems, 2, 3, 1996.

[19] E. Tanter. On Dynamically-Scoped Crosscutting
Mechanisms. EWAS 2006.

[20] P. Tarr, M. D’Hondt, L. Bergmans, C. Lopes.
Workshop an Aspects and Dimensions of Concerns:
Requirements on, and Challenge Problems For,
Advanced Separation of Concerns. ECOOP 2000
Workshops, Proceedings, Springer LNCS.

[21] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
B.N. Jorgensen. Dynamic and Selective Combination
of Extensions in Component-Based Applications.
ICSE 2001, Proceedings.

[22] M. Veit and S. Herrman. Model-View-Controller and
ObjectTeams: A Perfect Match of Paradigms. AOSD
2003, Proceedings, ACM Press.


