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ABSTRACT

There is a wide range of scenarios where software systems
have to be able to behave differently according to their
context of use. In Context-oriented Programming (COP),
programs can be partitioned into behavioral variations that
can be freely activated and combined at runtime with well-
defined scopes, such that the program behavior is affected
depending on context. About four years ago, we have intro-
duced our vision of Context-oriented Programming and have
presented the programming language ContextL as an exten-
sion to the Common Lisp Object System (CLOS), as our
first language extension that explicitly realizes this vision.
Since then, ContextL has been picked up by various devel-
opers world-wide, is now in use in several software systems,
and has been continuously improved to meet the demands
of its users. For these reasons, ContextLi can currently be
regarded as the most mature realization of COP concepts.
In this paper, we give an overview of the major ingredients
of ContextL, describe the developments in ContextL of the
last four years, and sketch some future work.

Categories and Subject Descriptors

D.1 [Software|: Programming Techniques— Object-oriented
Programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features
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1. CONTEXT-ORIENTED PROGRAMMING

There is a wide range of scenarios where software systems
have to be able to behave differently according to their con-
text of use [2, 3, 4, 6, 16, 23, 25, 28]. In Context-oriented
Programming (COP), programs can be partitioned into be-
havioral variations that can be freely activated and com-
bined at runtime with well-defined scopes. Such behavioral
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variations consist of partial definitions for typical program
entities, like classes, methods, functions, procedures, and so
on. The essential ingredients of Context-oriented Program-
ming are as follows:

Context is any information that can be computationally
accessed in a software system.

Behavioral variations describe the context-dependent be-
havior of a software system as increments on the un-
derlying context-independent program definitions.

Layers group such behavioral variations as first-class enti-
ties that can be referenced in a program at runtime.

Layer activation is achieved by language constructs that
ensure that such layers are added at runtime, such that
the respective partial program definitions have an in-
fluence on the actual behavior of a program.

Scoping of layer activation and deactivation ensures that
the behavioral variations are only effective for well-
defined parts of a program, and for well-defined dura-
tions.

Context-oriented Programming focuses on programming
constructs to enable grouping, referencing, and activation
and deactivation of layers of behavioral variations. It should
thus be seen as a complement to the (equally important) re-
search on context acquisition and reasoning, where the focus
is on sensing (low-level) context data and inferring (high-
level) context information (for example [25]). Our definition
of context is open and pragmatic, in that it treats any com-
putationally accessible information as potential parameters
for influencing the behavior of a program. In contrast, the
widely cited definition for context of Dey at al. [17] states
that “Context is any information that can be used to char-
acterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interac-
tion between a user and an application, including the user
and applications themselves.” That definition distinguishes
between relevant and irrelevant information, which is im-
portant when modelling systems for context acquisition and
context reasoning. It differs in this regard from our defi-
nition that is targeted at structured ways of how to affect
program behavior depending on context, which should be
addressed by general-purpose constructs and thus indepen-
dent of the kinds of context information they may or may
not depend on.



About four years ago, we have introduced our vision of
Context-oriented Programming and have presented the pro-
gramming language ContextL as an extension to the Com-
mon Lisp Object System (CLOS), as our first language ex-
tension that explicitly realizes this vision [8]. Since then we
have implemented the underlying ideas as extensions for var-
ious other programming languages, like Smalltalk [19], Java
[9], Ruby and Python, together with various use cases. Dur-
ing the course of these experiments, the essential ingredients
of context, behavioral variations and scoped layer activation
have proved to be stable corner stones.

On top of that, ContextL. has been picked up by various
developers world-wide since its public release as an open-
source language extension, is now in use in several software
systems in the “real world,” and has been continuously im-
proved to meet the demands of its users. For these reasons,
ContextL can currently be regarded as the most mature re-
alization of COP concepts.?

2. CONTEXTL: STATE OF THE ART

2.1 Essential Features

ContextL is an extension to the Common Lisp Object Sys-
tem (CLOS), and thus includes object-oriented features like
classes with multiple inheritance, slots (fields) and meth-
ods with multiple dispatch. Like CLOS, ContextL is not
based on message sending, but on generic functions [5].3
For each of the core defining constructs in CLOS, there is a
corresponding defining construct in ContextL: For definin-
ing classes, ContextL provides define-layered-class as an
analogue to CLOS’s defclass. Likewise, ContextL provides
define-layered-function and define-layered-method as
analogues to CLOS’s defgeneric and defmethod for defin-
ing generic functions and methods.

Layers can be introduced in ContextL with deflayer and
an associated name, as follows.

(deflayer layer-name)

Such layers can then be further specified with partial class
and method definitions, which can be explicitly associated
with such layers, as follows.

(define-layered-class class-name
[:in-layer layer-name]
({superclass}”)
({slot-specification}”)
{class-option}™)

(defmethod function-name [:in-layer layer-name]
{method-qualifier}" parameters method-body)

There is always a root layer present that defines the context-
independent behavior of a program, and class and method
definitions can be associated with the root layer by either
omitting the :in-layer specification, or by using t as the
layer name.?

LAl this work has been performed in close collaboration
with Robert Hirschfeld.

2ContextL can be downloaded from
http://common-lisp.net/project/closer/contextl.html
3Note, however, that our experiments with similar exten-
sions for other object-oriented programming languages show
that COP is compatible with message sending as well.
4The symbol t is traditionally used in Lisp dialects to denote
“general” concepts, like the boolan truth value, the super-

By default, only the root layer is active at runtime, which
means that only definitions associated with the root layer
effect the behavior of a program. Other layers can be acti-
vated at runtime by way of with-active-layers, as follows.

(with-active-layers ({layer-namel}™)
body)

Such a layer activation ensures that all the named layers
affect the program behavior for the dynamic extent of the
enclosed program code (body). Layer activation is dynami-
cally scoped: Both direct and indirect invocations of generic
functions (methods) and slot accesses in the control flow
of the layer activation are affected. Furthermore, layer ac-
tivation is restricted to the current thread of execution in
multithreaded Common Lisp implementations, to avoid race
conditions and interferences between different contexts.

Furthermore, layers can be deactivated at runtime by way
of with-inactive-layers, as follows.

(with-inactive-layers ({layer-name}™)
body)

Such a layer deactivation ensures that none of the named
layers affect the program behavior for the dynamic extent of
the enclosed program code anymore. As with with-active-
layers, layer deactivation is dynamically scoped and re-
stricted to the current thread of execution.

Layer activations and deactivations can be nested arbi-
trarily in the control flow of the program. Both multiple
activations and deactivations of the same layer are ignored,
each layer is only active or inactive at most once. Further-
more, the order of layer activation determines method speci-
ficity when generic functions are invoked: Methods from
more recently activated layers in the control flow of a pro-
gram are executed before methods from less recently acti-
vated layers and the root layer.

The above constructs allow referencing layers at runtime,
but only as second-class citizens. However, for each of the
above constructs, there exist corresponding first-class con-
structs: The functions ensure-layered-function, ensure-
layered-method and ensure-layer enable defining layered
functions, layered methods and layers at runtime. Further-
more, funcall-with-layer-context and apply-with-layer-
context enable activating and deactivating computed com-
binations of layers, and adjoin-layer and remove-layer en-
able computing such combinations of layers from first-class
layer representations.

Finally, there are cases where it is useful that layers are
activated or deactivated globally for all threads without dy-
namic scope, for example for interactive testing and de-
velopment, or for program deployment (at system startup
time). The functions ensure-active-layer and ensure-
inactive-layer enable such global activation and deactiva-
tion of layers.

2.2 Efficient Layer Activation

Context-oriented Programming encourages continually
changing program behavior. For example, we have illus-
trated a use case in [9] where side effects on graphical ob-
jects trigger updates of their representations on the screen.
Context-oriented Programming can successfully be used in
such a scenario to avoid invalid screen updates in situations
where graphical objects are in intermediate states during

type of all types, the standard output stream, and so on.



composite changes. This use case is characterized by re-
peated activation and deactivation of a layer that is respon-
sible for the necessary screen updates.

Such examples show that it must be possible to implement
layer activation and deactivation efficiently in order to make
Context-oriented Programming a sane option in a program-
mer’s toolbox. It is indeed not obvious that layer activation
and deactivation can be efficient. However, we have found
an implementation for ContextL on top of CLOS with com-
petitive performance. The key ingredients are as follows.

e Layer activation and deactivation leads to a runtime
composition of multiple, arbitrary layers. Such layer
composition is realized internally in ContextL by reusing
CLOS’s support for multiple inheritance. This can be
achieved by representing composed layers as dynami-
cally created classes that multiply inherit from other
layers, on top of which they are activated and which
are themselves represented as classes. Dynamic class
creation is supported by way of the CLOS Metaobject
Protocol [20], and although dynamic class creation is
costly in terms of performance, such classes can be
cached in a way such that each combination of a given
sequence of layers needs to be created only once, and
can be looked up very efficiently from then on.

e In ContextL, method selection and combination must
depend on the current sequence of active layers. Since
layer combinations are already represented as classes,
we can internally represent the current sequence of ac-
tive layers as a (prototypical) instance of such a com-
bined class, and drive method selection and combina-
tion by implicitly passing such an instance as an argu-
ment to an appropriately specialized parameter that
is added to each layered method internally.® In this
case, efficiency also comes from caches that allow for
fast lookup of applicable methods, which is already
provided by typical CLOS implementations [21].

e Layer activation and deactivation must modify the cur-
rent sequence of active layers in such a way that the
change is only visible in the current thread of execu-
tion, to ensure that they do not interfere with other
threads in multithreaded Common Lisp implementa-
tions. To achieve this, the representation of the cur-
rent sequence of active layers is bound to a dynami-
cally scoped, thread-local variable, which are directly
supported by Common Lisp and for which implemen-
tation alternatives with well-understood performance
characteristics exist [1].

In [9], we discuss our overall implementation strategy in
more detail, together with some benchmarks that indeed
show a low overhead for layer activation and deactivation in
terms of performance.

2.3 Reflective Layer Activation

Organizing a program into layers may lead to dependen-
cies between layers: Layers may require each other’s pres-
ence, or may be mutually exclusive. For example, a typical
use case for Context-oriented Programming is to separate

5Due to the fact that CLOS supports multiple dispatch,
adding such a specialized parameter to a method does not
prevent users from dispatching on other arguments.

the generation of different output formats (html, pdf, json,
etc.) from the same document tree into several layers. Acti-
vating a layer for one output format should thus deactivate
the layers for other output formats. In [10], we illustrated
this idea with another example, where different tariffs for cell
phone usage are separated into different layers, which must
be mutually exclusive and, at the same time, all require the
presence of another base tariff layer.

In principle, it is possible to make such dependencies ex-
plicit by simply activating and deactivating all the involved
layers in all the places where layer activation or deactiva-
tion occurs. However, this turns out cumbersome. In [10],
we introduce a reflective API for ContextL that can be used
to make layer activations and deactivations automatically
trigger other layer activations and deactivations behind the
scenes. The essential idea is that each layer activation com-
putes the resulting sequence of active layers by invoking the
function adjoin-layer-using-class, and each layer deac-
tivation computes the resulting sequence of active layers by
invoking remove-layer-using-class. These two functions
are exposed by the ContextL. API, are themselves layered
functions, and can thus themselves be specialized by user-
provided layered methods. Such layered methods can in-
spect the layers to be activated or deactivated, inspect the
current sequence of active layers, and ensure that other re-
quired layers are implicitly activated as well, other excluded
layers are implicitly deactivated, or invalid layer activations
or deactivations are rejected.

In [10], we discuss the details of ContextL’s reflective ar-
chitecture, illustrate its use by giving examples, and show
that it can be implemented without affecting the perfor-
mance achieved by the implementation strategy discussed
in [9] (see above).

2.4 Description of Layer Dependencies

In spite of the usefulness of reflective layer activation, im-
plementing extensions on top of ContextL’s reflective API
proves to be a complex task. In [12], we show a first step
of how feature diagrams, or better the feature description
language (FDL, [15]) as their textual counterpart, can be
used to provide a high-level description of layer dependen-
cies, such as requirement and exclusion dependencies. FDL
can be added as an extension on top of ContextL’s reflective
API without changing any of ContextL’s internal implemen-
tation details, and without affecting its essential efficiency
characteristics.

We have also gained some first experience with using fea-
ture diagrams for the requirements elicitation and design
phases of context-oriented systems. Context-Oriented Do-
main Analysis (CODA) [14] is a notation and methodology
for describing both the context-independent behavior and
the context-dependent behaviorial variations of a system.
This notation is based on feature diagrams, but extends it to
include — potentially dynamically changing — conditions un-
der which layers are required or excluded. We are currently
working on mapping CODA diagrams to context-oriented
programming languages such as ContextL.

2.5 Impact

Since its original release in 2005, ContextL, has been picked
up by several developers world-wide, and is now used in a
number of software systems in the “real world.” ContextL
is typically employed in web applications, where layers are



used to separate generation of different output formats from
the same document tree, and to provide different views and
modes to different kinds of users depending on their re-
spective tasks. For a description of one exemplary case see
http://p-cos.blogspot.com/2007_11_01_archive.html.

Furthermore, Context-oriented Programming has started
to impact other researchers who have picked up the term
and the concepts as starting points for their own work [7,
13, 18, 26]. A detailed discussion of such related work is
outside the scope of the overview given here.

3. FUTURE WORK AND CONCLUSIONS

There are several ways in which ContextL can be extended
to broaden its scope of applicability:

e ContextL’s reflective API can be extended to support
first-class dynamic enviroments. The idea is to sup-
port capturing the current sequence of active layers
as a first-class entity such that it can be reeinstated
later for a different context. For example, this would
allow passing context from one thread to another and
storing the current context of a suspended computa-
tion to be later resumed, for example in continuation-
based web applications [24]. Since frameworks for such
continuation-based web applications are typically based
on partial continuations, we actually need support for
delimited dynamic bindings, as in [22]. Since there are
different continuation frameworks available for Com-
mon Lisp, we have to design the reflective API for
first-class dynamic environments in such a way that
they are compatible with different kinds of partial con-
tinuations.

e Currently, layers in ContextL contain partial class and
method definitions, where the method definitions are
typically specialized on classes. Although CLOS sup-
ports method specialization on single objects as well,
somewhat similar to what is provided in prototype-
based object systems, the actual use of layer activa-
tion or deactivation for single objects is not straight-
forward, but would sometimes be useful. After some
experimentation with different ideas, we have come
up with a generalization of generic function dispatch
called filtered dispatch which allows for filtering argu-
ments before method selection and combination, while
passing the original unfiltered arguments to the thus
selected methods for execution [11]. This results in
a very powerful and expressive dispatch mechanism,
which has a potential to serve as a basis for context-
dependent behavior of single objects.

e Context-dependent behavior is also important in dis-
tributed settings, especially in the case of ad-hoc mo-
bile networks between mobile devices. Some first ex-
periments in using COP concepts in such a setting are
very promising. Interesting research topics are how to
distribute layer activation across several nodes of such
a network, and how to deal with potentially different
context parameters from different interacting nodes.
We have described first steps in that regard in the
Context-Dependent Role Model [27], and are currently
working on integrating a full-fledged distributed archi-
tecture with ContextL.

Other important areas of research need to address ques-
tions such as:

e What are good software architectures that can take
advantage of Context-oriented Programming? There is
now a considerable amount of pratical experience with
languages like ContextL, and some design principles
have started to emerge, but they have not been codified
yet, for example in the form of design patterns and
architectural patterns, or in the form of libraries and
frameworks that take advantage of Context-oriented
Programming.

e What are good methodologies for eliciting requirements
for, and designing context-oriented software systems?
We have made some first steps with CODA [14] (see
above), and current research in the field of Software
Product Lines and especially Dynamic Software Prod-
uct Lines are very promising starting points.

e How can context-aware systems be tested and verified?
This is an inherently hard issue because of the combi-
natorial explosion of possibilities induced by the pres-
ence of multiple context parameters, which is reflected
in Context-oriented Programming by the presence of
multiple layers that can be arbitrarily combined with
each other in the general case.

At this stage in time, we can rightfully claim that Context-
oriented Programming has reached a certain level of matu-
rity, has fostered some interesting research results, and has
started to gain traction in industry. ContextL, as based on
the Common Lisp Object System, has proved to be a viable
tool both for research and for industrial use, and will there-
fore remain one of our main vehicles for exploring the field
in more depth.
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