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Abstract
Software transactional memory (STM) is a promising approach for
coordinating concurrent threads, for which many implementation
strategies are currently being researched. Although some first steps
exist to ease experimenting with different strategies, this still re-
mains a relatively complex and cumbersome task. The reason is that
software transactions require STM-specific dynamic crosscutting
adaptations, but this is not accounted for in current STM imple-
mentations. This paper presents CSTM, an STM framework based
on Context-oriented Prorgamming, in which transactions are mod-
elled as dynamically scoped layer activations. It enables expressing
transactional variable accesses as user-defined crosscutting con-
cerns, without requiring invasive changes in the rest of a program.
This paper presents a proof-of-concept implementation based on
ContextL for Common Lisp, along with example STM strategies
and preliminary benchmarks, and introduces some of ContextL’s
unique features for context-dependent variable accesses.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming; D.1.5 [Software]:
Programming Techniques—Object-oriented Programming; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Software transactional memory, framework design,
context-oriented programming

1. Introduction
1.1 Software Transactional Memory
A common problem in multithreaded systems is that of data races
that can appear when concurrent read and write accesses to shared
data are not coordinated. Such problems are traditionally dealt with
by using low-level mechanisms such as locks for controlling the
progress of threads. Programming with locks is difficult because
code using them may suffer from deadlocks and does not easily
compose. Software transactional memory (STM) [20] proposes the
use of a transactional model to alleviate many of these problems,
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by providing a well-defined protocol for automatically coordinating
reads and writes to shared data.

The essential idea is that software transactions inherit the atom-
icity and isolation properties from database transactions. Atomicity
requires a transactional piece of code to execute completely or, in
case of failure, to roll back any side effects in order to give the illu-
sion of not having been executed at all. Isolation requires the result
of executing a transaction not to influence the result of other con-
currently executing transactions. A correct implementation of these
properties assures that transactions avoid data races.

Both library-based and language-based realizations of STM ex-
ist. STM libraries [8, 9, 16] provide APIs for opening and closing
transactions, while language support for STM [6, 19] typically ex-
tends a language with a keyword atomic for enclosing code, and
the underlying STM implementation then ensures that such atomic
blocks are executed transactionally. For example, if Lisp had an
atomic operator, a thread-safe implementation of the insert op-
eration for a double-linked list could look like as follows.

(defun insert (node new-node)
(atomic (set-previous new-node node)

(set-next new-node (next node))
(if (not (null (next node)))
(set-previous (next node) new-node))

(set-next node new-node)))

However, STM introduces a large runtime overhead due to the
need to monitor read and write accesses to shared transactional
memory. Numerous strategies to balance that overhead have been
proposed, based on pessimistic vs. optimistic concurrency control,
early vs. late conflict detection, direct vs. deferrred memory up-
dates, and so on [16]. There is no definitive winner because each of
these options perform better or worse for different applications.

Therefore, a number of benchmark suites have been developed
for assessing different variations of STM algorithms [2, 15]. Such
benchmark suites define a number of dedicated benchmarks that are
developed against a generic STM interface, which in turn allows the
STM algorithm to vary silently underneath. This enables compar-
ing the runtime overheads of different algorithms under different
circumstances. However, apart from providing a generic STM in-
terface, such benchmark suites do not support the development of
STM algorithms further, for example by providing reusable build-
ing blocks for implementing them. The latter is the focus of STM
frameworks that provide common STM functionality and hooks.

1.2 STM Frameworks
Herlihy et al. previously proposed such an STM framework called
DSTM2 [8]. Their approach is implemented as a library for Java
that takes advantage of Java’s reflective capabilities and its class



loader architecture to create new classes at runtime for user-defined
Java types. These new classes contain pairs of getter and setter
methods that operate on instance variables, with additional behav-
ior as required by the various STM algorithms. New STM strate-
gies can be plugged in that provide templates for new such getter
and setter methods.

To be able to deploy an STM strategy with DSTM2, each class,
whose instance variables must be accessed transactionally, needs to
be expressed as a specially annotated interface type. That interface
type then needs to be explicitly passed to an STM-specific transac-
tional factory to create another factory that must be used for creat-
ing instances of the respective interface type. This ensures that their
getter and setter methods adhere to the respective STM strategy.

The changes to a program as required by DSTM2 are invasive:
The transactional factory needs to be installed globally, all affected
classes must be expressed as such annotated interface types instead,
and for creating new instances, programmers must use the vari-
ous generated factories throughout the program. The reason why
such invasive changes are needed is that in Java, as in most object-
oriented programming languages, instance variables and their get-
ters and setters are associated with the classes to which they be-
long, so an STM framwork needs to find a way to insert their own
STM-specific variable access semantics into those classes. How-
ever, the semantics of a particular STM strategy are conceptually
independent of the involved classes, and in fact must be the same
for all of them. In this sense, an STM strategy is a crosscutting
concern, requiring invasive modifications of the source code when
using mainstream object-oriented programming languages.

The only other STM framework we are aware of that enables
expressing one’s own STM strategy as a user-defined extension
is our own interpreter of a subset of Scheme, which is based on
modelling memory locations as explicit entities [10]. In that frame-
work, the semantics of memory locations can be globally modified
by defining reflective methods for read and write accesses to such
memory locations. Since all of the data structures of our Scheme
interpreter – such as plain variables, Scheme pairs, and vectors –
use such memory locations internally, there is no need for any in-
vasive changes in a Scheme program to enable the use of software
transactions, except of course for inserting the necessary atomic
blocks: As soon as the reflective methods for writing and reading
memory locations are loaded into a running system, all accesses
to all data structures are performed using the same transactional
semantics. Except for the fact that our solution is so far only avail-
able as an interpreter, the main disadvantage of our approach re-
mains that the modification of read and write accesses is a global
change: There is no straightforward way to distinguish between dif-
ferent STM strategies at runtime without redefining such accesses
by completely replacing them with new definitions.

1.3 Context-oriented Programming
In Context-oriented Programming (COP), programs can be parti-
tioned into behavioral variations that can be freely composed and
activated at runtime with well-defined scopes. The typical ingredi-
ents of context-oriented programming languages are [12]:

Behavioral variations describe the context-dependent behavior of
a software system as increments on the underlying context-
independent program definitions.

Layers group such behavioral variations as first-class entities that
can be referenced in a program at runtime.

Layer activation ensures that the increments defined by a partic-
ular layer are in effect for a well-defined scope - that is, for a
well-defined part of a pogram and for a well-defined duration.

ContextL is our first language extension to provide support
for Context-oriented Programming. In ContextL, layers consist of
partial definitions for classes and methods, and such layers can be
activated and deactivated both for dynamic and global scope.

The ideas behind COP and ContextL were developed without
software transactional memory as an application in mind. However,
two observations led to the ideas presented in this paper: One is
that the layers in COP can indeed express crosscutting concerns.1

The other is that both layer activation in ContextL and the atomic
blocks in STM are dynamically scoped constructs: Both affect the
the behavior of a program for the dynamic extent of the enclosed
code, and both are restricted to the current thread of execution. On
closer inspection, it is also indeed the case that memory accesses
in the dynamic extent of an atomic block behave differently than
outside of atomic blocks (where they either throw errors, or are
treated as fine-grained atomic accesses).

This strongly suggests that COP can be used to express STM,
and the focus of this paper is to show to what extent COP can
indeed be used to design an STM framework that does not suffer
from the problems of the other STM frameworks discussed above.

1.4 Contributions
The contributions of this paper are:

• We show how to design both a user interface and an extension
interface for an STM framework in a context-oriented style.

• More specifically, we discuss how user-defined modifications of
the operations relevant for implementing particular STM strate-
gies can be associated with layers, whose dynamic activations
and deactivations can be aligned with atomic blocks.

• An essential part of our approach is based on context-dependent
slot access, a feature of ContextL’s metaobject protocol that is
discussed here for the first time.

• We illustrate our approach by describing two widely known
STM strategies as extensions on top of our framework, together
with some first benchmarks.

2. ContextL in a Nutshell
ContextL is an extension to the Common Lisp Object System
(CLOS), and thus supports object-oriented features like classes
with multiple inheritance, slots (fields) and methods with mul-
tiple dispatch. Like CLOS, ContextL is not based on message
sending, but on generic functions [3].2 For each of the core
defining constructs in CLOS, there is a corresponding defining
construct in ContextL: For defining classes, ContextL provides
define-layered-class as an analogue to CLOS’s defclass.
Likewise, ContextL provides define-layered-function and
define-layered-method for defining layered generic functions
and methods.

Layers can be introduced in ContextL with deflayer, an as-
sociated name, and optionally one or more superlayers a layer
inherits from,3 as follows.

(deflayer layer-name [({superlayer }∗)])
Such layers can then be further specified with partial class and
method definitions, which can be explicitly associated with such
layers, as follows.

1 albeit not in the the AOP sense, by expressing pointcuts, but rather by
enumerating all modifications of program entities, like in FOP [12]
2 Note, however, that our experiments with similar extensions for other
object-oriented programming languages show that COP is compatible with
message sending as well.
3 as in class inheritance



(define-layered-class class-name
[:in-layer layer-name ]
({superclass }∗)
({slot-specification }∗)
{class-option }∗)

(define-layered-method function-name
[:in-layer layer-name ]
{method-qualifier }∗ parameters method-body )

There is always a root layer present that defines the context-
independent behavior of a program, and class and method def-
initions can be associated with the root layer by omitting the
:in-layer specification.

By default, only the root layer is active at runtime, which means
that only definitions associated with the root layer effect the behav-
ior of a program. Other layers can be activated at runtime by way
of with-active-layers, as follows.

(with-active-layers ({layer-name }∗)
body )

Such a layer activation ensures that all the named layers affect the
program behavior for the dynamic extent of the enclosed program
code (body). Layer activation is dynamically scoped: Both direct
and indirect invocations of generic functions (methods) and slot
accesses in the control flow of the layer activation are affected. Fur-
thermore, layer activation is restricted to the current thread of ex-
ecution in multithreaded Common Lisp implementations, to avoid
race conditions and interferences between different contexts.

Furthermore, layers can be deactivated at runtime by way of
with-inactive-layers, as follows.

(with-inactive-layers ({layer-name }∗)
body )

Such a layer deactivation ensures that none of the named layers af-
fect the program behavior for the dynamic extent of the enclosed
program code anymore. As with with-active-layers, layer de-
activation is dynamically scoped and restricted to the current thread
of execution.

There are cases where it is useful that layers are activated or de-
activated globally for all threads without dynamic scope, for exam-
ple for interactive testing and development, or for program deploy-
ment at system startup time. The functions ensure-active-layer
and ensure-inactive-layer enable such global activation and
deactivation of layers.

3. CSTM: STM in ContextL
3.1 Structure of an STM implementation
An STM algorithm monitors the reads and writes of memory exe-
cuted within transactions, and implements an algorithm for check-
ing whether any of these accesses causes a data race. In case there
is a data race, the STM ensures that the conflicting execution is
undone by rolling back one of the transactions.

According to Larus and Rajwar, two categories of STM imple-
mentations can be distinguished that follow fundamentally different
strategies: Direct-update and deferred-update STMs [16]. Direct-
update systems are based on a blocking synchronization strategy.
Whenever a transaction attempts to perform a write access to a
shared memory location, it obtains a lock for that memory loca-
tion to guarantee exclusive access, and can then instantly perform a
side effect. Rollbacks are expensive in such direct-update systems,
as the STM system needs to store old content of memory locations
on each write access in order to be able to restore them on rollback.
However, in case there are few data race conflicts, such an approach
can be very efficient, due to the instant side effects.

Conversely, deferred-update systems avoid blocking: When
transactions access a memory location, they acquire a copy of its
content and proceed executing in terms of that copy. Only when
a transaction commits, the new content is effectively written back
from the copy to the original memory location. Deferred-update
systems may also need to roll back transactions in case of data
races, but commits and rollbacks can be implemented cheaply by
using double indirections in a clever way.

3.2 The Client Interface of CSTM
Our goal in designing an STM Framework in ContextL was to
keep the amount of invasive code changes as minimal as possible.
Thus, CSTM provides a very straightforward extension for a CLOS
programmer. Here is an example class definition that is declared to
be transactional:

(define-transactional-class person ()
((name)
(address)))

Such a class is introduced with a define-transactional-class
macro, which is a very thin layer on top of layered class definitions
in ContextL. The definition of the person class above, in fact,
expands into the following equivalent ContextL code.

(define-layered-class person ()
((name :transactional t)
(address :transacional t))

(:metaclass transactional-class))

In this definition, the only differences to a ‘regular’ class def-
inition in CLOS are that the slots whose accesses need to be
monitored must be declared to be transactional, and that the
class itself must be declared to be an instance of the metaclass
transactional-class. Note especially that a class definition
does not need to state which particular STM strategy it should
use. Compare this to the equivalent ‘vanilla’ CLOS class defini-
tion below, which is almost exactly the same as the original class
definition above.

(defclass person ()
((name)
(address)))

Furthermore, CSTM also provides an atomic block construct
that wraps some code to be executed in a transaction in a straight-
forward way: (atomic some code ). By default, CSTM provides
a simplistic, coarse-grained locking semantics for atomic blocks,
such that all atomic blocks are forced to be executed in some strict
sequential order. If one wants to use an STM strategy that allows
for concurrent execution of atomic blocks in different threads, it
can be enabled by activating one of the STM strategy layers. CSTM
provides deferred-update-mode and direct-update-mode as
predefined STM strategies, but other strategies can be defined as
user-provided extensions. In fact, deferred-update-mode and
direct-update-mode are implemented purely in terms CSTM’s
extension interface (see Section 3.3).

A straightforward way to activate a particular STM strategy is to
globally activate it, for example by issuing (ensure-active-layer
’direct-update-mode). However, different threads can use dif-
ferent strategies by using the standard dynamically scoped layer
activation construct, as follows.

(with-active-layers (direct-update-mode)
...)

Note, though, that CSTM currently does not deal with negotiat-
ing between different STM strategies in case they access the very
same memory locations at the same time.



This is all a plain user of CSTM needs to know. Especially, there
is no need to prepare classes for transactional access in any further
way, and the standard means of creating instances in CLOS can be
used unchanged.

3.3 The Extension Interface of CSTM
The typical steps for defining one’s own STM strategy are:

• defining how transactional contexts are set up and torn down
• extending memory locations with further information (like ver-

sion information, locks, etc.)
• defining both ‘regular’ and transactional accesses to memory

locations
• defining additional actions and checks to be performed on com-

mit and rollback

For each of these steps, CSTM provides hooks that can be extended
in a context-oriented style.

Defining transactional contexts In CSTM, the atomic block
construct is actually a thin macro on top of the layered func-
tion call-atomic, such that (atomic some code ) expands to
(call-atomic (lambda () some code )). The default defini-
tion for call-atomic defines the coarse-grained locking seman-
tics as follows.

(defvar *global-lock* (make-lock))

(define-layered-method call-atomic (thunk)
(with-lock (*global-lock*) (funcall thunk)))

Here, a layered method definition on call-atomic associated
with a specific STM strategy can provide different semantics for
setting up and tearing down transactions.

Extending memory locations In CSTM, each slot in an object
does not store the actual slot value, but rather an explicit memory
location object that, by default, stores only the actual slot value. It
can be extended in ContextL layers to store more information as
needed by the different STM strategies. A memory location object
is an instance of the following layered class.

(define-layered-class transactional-slot-content ()
((v :layered-accessor transactional-slot-value)))

The value of such an explicit memory location object can be
accessed via transactional-slot-value, which is in turn a
layered function to enable more fine-grained context-dependent
slot access semantics.

Defining slot access semantics In order to be able to define STM-
specific semantics for memory accesses, it is important that such
memory accesses can be exposed as layered functions so that their
behavior can be modified in a context-oriented style. Fortunately,
ContextL provides a layered slot access protocol, which is an exten-
sion of the slot access protocol of the underlying CLOS Metaobject
Protocol (CLOS MOP, [13]), and which is indeed a layered proto-
col for defining context-dependent slot access semantics.

In brief, the lowest level of slot access defined by CLOS is
provided by the reader function slot-value and its correspond-
ing writer. When passed an object and a slot name as parameters,
slot-value returns the corresponding slot value. So for exam-
ple, (slot-value object ’name) returns the slot name of an
object, and corresponds to low-level field accesses in other lan-
guages, like for example object.name in Java. The CLOS MOP
enables intercepting such slot accesses by defining methods on the
reader slot-value-using-class and its corresponding writer.

The function slot-value is specified to be implemented as fol-
lows.4

(defun slot-value (object slot-name)
(slot-value-using-class

(class-of object) object slot-name))

The corresponding writer is defined in an analogous way. Such
a slot access protocol allows CLOS programmers to redefine slot
access semantics for user-defined metaclasses, for example to pro-
vide seamless integration of object-relational mappings [17].

In ContextL, the slot access protocol is extended in such a way
that the default definition for slot-value-using-class in turn
calls slot-value-using-layer (and the same for their corre-
sponding writers). The layered function slot-value-using-layer
allows associating one’s own slot access sematics with layers,
which can be used to implement STM-specific slot access seman-
tics in CSTM. In fact, CSTM does not need to provide any further
hooks for modifying slot accesses. In Section 4, we show in detail
how this feature of ContextL is used for STM.

Defining commit and rollback semantics The default semantics
for atomic blocks in CSTM do not require specific semantics for
commit and rollback, since the coarse-grained locking semantics
already ensure sequential execution of all atomic blocks. How-
ever, since commits and rollbacks are typically used in STM strate-
gies, they are provided as layered functions commit-transaction
and roll-back. By default, they just throw exceptions since they
do not have useful semantics in the default STM strategy, but
they can be extended in a context-oriented style for particular
STM strategies. Furthermore, a retry exception class and a plain
(non-layered) function retry-transaction is provided that calls
roll-back and throws a retry exception. Again, these are utility
definitions which are typically needed in STM strategies.

The Layers in CSTM CSTM defines a layer stm that is globally
active by default. It modifies the slot access protocol of CLOS in
such a way that all slot accesses transparently assume the presence
of explicit memory locations of class transactional-slot-con-
tent. For this purpose, methods on slot-value-using-layer
and its corresponding writer are defined as follows.

(define-layered-method slot-value-using-layer
:in-layer stm :around
((class transactional-class) object slot)
(transactional-slot-value (call-next-method)))

(define-layered-method (setf slot-value-using-layer)
:in-layer stm :around
(new-value (class transactional-class) object slot)
(let* ((new-loc (make-instance

’transactional-slot-content
:value new-value))

(return-loc (call-next-method
new-loc class object slot)))

(transactional-slot-value return-loc)))

In the reader slot-value-using-layer, an invocation of
call-next-method returns the current memory location object,
and by calling transactional-slot-content on the returned
location, we can retrieve the actual slot contents. In the writer
(setf slot-value-using-layer), the new value to be as-
signed to the slot is wrapped in a fresh instance of transactional-
slot-content and passed as a changed argument to call-next-
method. As is customary in CLOS, we also return the value just

4 However, an implementation of CLOS typically optimizes the invocation
of slot-value-using-class away if no intercepting method is defined.



assigned from the writer, by accessing the value from the memory
location returned by call-next-method.

On top of this default layer, CSTM defines two further abstract
layers stm-mode and transaction, which are supposed to be sub-
classed by user-defined STM strategies. This reflects the necessity
to provide two layers in an STM strategy: The main purpose of an
STM mode layer is to define the semantics of ‘regular’ slot accesses
(outside of transactions) and to define how transactional contexts
are set up and torn down in call-atomic. A transaction layer de-
fines the semantics of transactional slot accesses, and how commits
and rollbacks are performed. The activation of a transactional con-
text in the mode layer is typically achieved by dynamically scoped
activation of the corresponding transaction layer in call-atomic.

This concludes the discussion of the extension interface of
CSTM. In the following section, we illustrate how it can be used to
define two well-known STM strategies.

4. Example Strategies in CSTM
4.1 Implementing a direct-update STM
Our first example STM is based on 2-phase locking with optimistic
reads (as for example in BSTM [7]). Here, every read access to
a shared memory location is just logged, but for write accesses,
a transaction first needs to acquire an exclusive lock. When the
lock is successfully acquired, the transaction first records a copy
of the memory location’s content, and then updates its content with
the new value. A transaction releases all the locks it has acquired
when it successfully finishes. However, at the end of a transaction,
the STM algorithm first checks for read-after-write conflicts by
ensuring that none of the memory locations that were read were
updated in other transactions afterwards. When there are no such
conflicts, the transaction can indeed commit and release all its
locks. Otherwise, in case a read-after-write conflict is detected, the
transaction rolls back, reverts all of the write accesses it performed,
releases its locks, and eventually restarts. Write-after-write data
races are avoided due to the locks aquired for write accesses, which
block other transactions from performing further write accesses
before the current transaction is finished.

Direct-update layers We define two layers direct-update-mode
and direct-update-transaction that inherit from the corre-
sponding abstract layers provided by CSTM.

(deflayer direct-update-mode (stm-mode))
(deflayer direct-update-transaction (transaction))

Setting up and tearing down a direct-update transactional con-
text requires preparing read and write sets for the current trans-
action, such that information about read and written slots can be
recorded; activating the direct-update transaction; performing a
commit (with implicit read-after-write checks); ensuring the re-
lease of all locks taken by the transaction; and dealing with attempts
to retry a transaction.

(define-layered-method call-atomic
:in-layer direct-update-mode (thunk)
(handler-case
(let ((*read-set* (make-hash-table))

(*write-set* (make-hash-table)))
(with-active-layers (direct-update-transaction)
(unwind-protect

(let ((result (funcall thunk)))
(commit-transaction)
result)

(release-locks))))
(retry () (call-atomic thunk))))

This layered method for call-atomic is associated with the
direct-update-mode. It sets up an exception handler for retry
exceptions using handler-case5; it binds the dynamically scoped
variables *read-set* and *write-set* to fresh hash tables
for recording read and write access information; it activates the
direct-update-transaction layer with dynamic scope; it sets
up an unwind handler to ensure that locks are always released
using unwind-protect6; and it ensures that, after executing the
code provided by the user, commit-transaction is called, which
implicitly also performs the read-after-write checks.

Direct-update memory locations Memory locations in direct-
update mode require two more pieces of information apart from the
actual slot value: the version of a memory location and a lock that
can be used for performing write accesses. This can be achieved
in a straightforward way by extending the layered class trans-
actional-slot-content for the layer direct-update-mode
as follows.

(define-layered-class transactional-slot-content
:in-layer direct-update-mode ()
((version :initform 0 :accessor slot-version)
(lock :initform (make-lock) :reader slot-lock)))

Direct-update slot accesses The slot access semantics for direct-
update mode, when there is no transaction active in the current
thread, is not well-defined in the general case, since other threads
may have left a slot in an intermediate state as part of an ongoing
transaction. However, it is useful to be able to read and write slots
when there is no transaction currently active at all, for example for
performing initialization of as-yet unshared objects. For this rea-
son, we leave slot access semantics in direct update mode outside
of transactions untouched, and consider it the responsibility of the
programmer to use unmonitored slot accesses wisely.

The slot access semantics for direct-update transactions, though,
is well-defined: When reading a slot during a transaction, we have
to register the current version of the slot such that we can perform a
read-after-write check on a later commit. For that purpose, we de-
fine a method on the layered function slot-value-using-layer
as follows.

(define-layered-method slot-value-using-layer
:in-layer direct-update-transaction
((class transactional-class) object slot)
(let ((loc (call-next-method)))

(if (not (gethash loc *read-set*))
(setf (gethash loc *read-set*)

(slot-version loc)))
loc))

The value returned by call-next-method is an explicit mem-
ory location object, and this is also what we need to return from
this particular method (cf. Section 3.3).

Writing a slot during a direct-update transaction is more com-
plex: We first have to retrieve the memory location object and then
attempt to grab its lock, before performing a read ceck, recording
the current value for later recovery on roll-back, and finally setting
the actual slot value.

5 similar to Java’s try-catch
6 similar to Java’s try-finally



(define-layered-method (setf slot-value-using-layer)
:in-layer direct-update-transaction
(new-loc (class transactional-class) object slot)
(let* ((old-loc (with-inactive-layers

(transaction stm-mode stm)
(slot-value object slot)))

(locked (try-lock (slot-lock old-loc))))
(if (not locked) (retry-transaction))
(let ((read-version

(gethash old-loc *read-set*)))
(if read-version
(if (> (slot-version old-loc) read-version)

(retry-transaction)
(remhash old-loc *read-set*))))

(if (not (gethash old-loc *write-set*))
(setf (gethash old-loc *write-set*)

(cons
(with-inactive-layers (transaction)
(slot-value object slot))

(slot-version old-loc))))
(setf (slot-value old-loc ’value)

(slot-value new-loc ’value))
old-loc))

This method first reads the raw memory location object. This
is achieved by temporarily deactivating all layers that are involved
in the STM machinery, so that no read accesses are recorded and
no conversion to actual slot values takes place. The method then
tries to grab the lock of the memory location object. If it fails to
do so, it immediately retries the transaction. (A more sophisticated
contention manager may try to force the conflicting transaction to
roll back here based on some criteria.) We then perform a check to
ensure that some other transaction has not successfully committed
a write access to the slot in question since the last time the current
transaction has read the slot. If the check fails, we again retry the
current transaction, otherwise we remove the slot from the current
read set. We then record in the write set both the current slot value
– here we need the actual value, not the memory location object,
but without recording another read access – and the current slot
version. Finally, we can perform the actual write access by directly
modifying the memory location object we just locked. The memory
location object passed by the underlying stm layer holding the new
value is silently discarded.

Direct-update commit and rollback A commit during a direct-
update transaction first has to check whether all slot values accessed
in read mode still have the same version as when they were first
read. Otherwise they were updated by some other transaction in
between and are not valid anymore. Only then can the version
of the slot be increased to signal a successful commit to other
transactions.

(define-layered-method commit-transaction
:in-layer direct-update-transaction ()
(maphash (lambda (loc read-version)

(if (> (slot-version loc) read-version)
(retry-transaction)))

*read-set*)
(maphash (lambda (loc info)

(incf (slot-version loc)))
*write-set*))

A rollback for a direct-update transaction simply has to go
through all the slots accessed in write mode and write back the
previously recorded old values of those slots. However, this must
not happen when other threads already successfully committed a
write access to the slot in question in the meantime.

(define-layered-method roll-back
:in-layer direct-update-transaction ()
(maphash (lambda (loc info)

(let ((old-value (car info))
(write-version (cdr info)))

(if (not (> (slot-version loc)
write-version))

(setf (slot-value loc ’value)
old-value))))

*write-set*))

Both for commits and rollbacks, the direct-update mode ensures
in call-atomic above that all locks grabbed by a direct-update
transaction are released by invoking release-locks. That plain
function just iterates over the write set for performing this task.

(defun release-locks ()
(maphash (lambda (loc info)

(unlock (slot-lock loc)))
*write-set*))

This concludes the implementation of the STM algorithm based on
2-phase locking.

4.2 Implementing a deferred-update STM
The second example we illustrate is a lock-free, deferred-update
STM that implements a nonblocking synchronization strategy, as
originally implemented in the DSTM system by Herlihy et al. [9].
In DSTM, a memory location does not store only one single current
value, but two different such values, one of which is considered new
and the other old. On top of that, a third value indicates which of
the two former values should be considered valid. That third value
is a reference to the transaction that did the last write to the memory
location, and depending on the state of that transaction – which can
be active, committed or aborted – either the old or the new value of
the memory location is selected. By using two different values and
selecting them based on the state of the transaction that performed
the last write access, costly roll backs can be avoided (see below).

On each read access to a memory location, DSTM checks the
state of the transaction that performed the last write. If it is com-
mitted, the new value is returned. Otherwise, if it is aborted, the old
value is returned. In both cases, the read is successful and recorded
in the current read set. However, if that transaction is not the cur-
rent one but still active, it still uses the memory location. Therefore,
none of the two values can be considered valid, but a conflict res-
olution must be performed to determine whether the current or the
other transaction needs to be aborted.

Likewise, on each write access, DSTM also checks the state of
the transaction that performed the last write. If it is either commit-
ted or aborted, a new memory location object is created, where the
old content is the current memory location’s valid content (the new
content for a committed transaction, the old content for an aborted
transaction), and where the new content is the value to be written.
Additionally, the reference to the transaction that performed the last
write is set to the current transaction performing the write access.
Finally, using a compare-and-swap operation, the old memory lo-
cation object is atomically replaced by the new one.7 Again, if the
transaction that performed the last write to the old memory location
object is still active, a conflict resolution strategy determines which
of the two involved transactions to abort.

DSTM checks for data races in two places: Firstly, on every read
access to a memory location, write-after-read races are handled by

7 compare-and-swap is a common hardware primitive that atomically com-
pares the content of a memory location with an old value, and if they are
the same, changes that memory location’s content to a new value.



checking that the transaction that performed the last write access
is not active. Otherwise, that transaction wrote a value that still
needs to be read by the current transaction. Secondly, on every
attempt to commit a transaction, read-after-write races are handled
by ensuring that none of the memory locations recorded in the
current read set were updated by other transactions in between.
If that check fails, the current transaction has to abort, but does
not have to revert any of the write accesses it performed: Since the
memory locations in question still have copies of their old contents,
future accesses will return these old contents due to the aborted
state of the current transaction (which indeed performed the last
writes to these locations). Write-after-write races do not need to be
explicitly checked, since a transaction can only obtain write access
to a memory location when no other transaction is actively using it,
and then remains active itself until it commits or aborts.

Deferred-update layers We define two layers deferred-update-
mode and deferred-update-transaction that inherit from the
corresponding abtsract layers provided by CSTM.

(deflayer deferred-update-mode (stm-mode))
(deflayer deferred-update-transaction (transaction))

Setting up and tearing down a deferred-update transactional
context is very similar to the direct-update case: It requires prepar-
ing a read set (but no write set) for the current transaction; acti-
vating the deferred-update transaction; performing a commit (with
implicit read-after-write checks); and dealing with attempts to retry
a transaction. Note that deferred-update transactions do not use
locks, so no locks need to be released here. Instead, we need to bind
a dynamically scoped *current-tx-state* variable to a new in-
stance representing the current transaction state.

(define-layered-method call-atomic
:in-layer deferred-update-mode (thunk)
(handler-case
(let ((*current-transaction-state*

(make-instance ’transaction-state
:state :active))

(*read-set*
(make-hash-table :test #’equal)))

(with-active-layers
(deferred-update-transaction)

(let ((result (funcall thunk)))
(commit-transaction)
result)))

(retry () (call-atomic thunk))))

The variable *current-tx-state* records whether the cur-
rent transaction is committed, aborted or active. To enable perform-
ing cheap commits and rollbacks, the transaction state is stored in-
directly in a transaction state object that is shared by all slots on
which a transaction has performed a write access. Thus both com-
mits and rollbacks are essentially simple assignments to a slot of
that one object.

We define the transaction state as a regular class. We also define
*current-tx-state* as a global variable that is initialized such
that slot accesses outside of transactions are always considered as
immediately committed.

(defclass transaction-state ()
((state :initarg :state :accessor tx-state)))

(defvar *current-tx-state*
(make-instance ’transaction-state

:state :committed))

Deferred-update memory locations Memory locations in deferred-
update mode require an additional slot for storing an old slot value
that potentially still needs to be accessible, and a reference to a
transaction state as defined above, which indicates whether the
transaction that performed the last write access to the slot is com-
mitted, aborted or active. As for the direct-update mode above, we
can just extend the layered class transactional-slot-content
to add these pieces of information.

(define-layered-class transactional-slot-content
:in-layer deferred-update-transaction ()
((old-value :initarg :old-value)
(most-recent-tx-state

:initform *current-tx-state*
:reader most-recent-tx-state)))

Deferred-update slot accesses The slot access semantics for
deferred-update mode, when there is no transaction active in the
current thread, has to consider whether other threads currently per-
form any transactions. For read accesses, this means that we have
to check on each access whether the transaction that performed the
last write on a slot is committed or aborted – in that case we can
just return the current or old value – or whether it is still active, in
which case we can either wait until it commits or aborts, or we can
try to force it to abort to be able to make progress ourselves.

Since the slot access methods defined for the stm layer require
that slot access methods in stm-mode layers receive and return
instances of transactional-slot-content, we have to define
methods both for reading the transactional slot content itself, as
well as for the actual slot read accesses.

Recall that the accessor for the value of a transactional slot
content is itself defined as a layered function. This allows defining
a layered method associated with deferred-update-mode for it.

(define-layered-method transactional-slot-value
:in-layer deferred-update-mode
((loc transactional-slot-content))
(case (tx-state (most-recent-tx-state loc))

(:committed (slot-value loc ’value))
(:aborted (slot-value loc ’old-value))
(:active (if (eq (most-recent-tx-state loc)

*current-tx-state*)
(slot-value loc ’value)
(retry-transaction)))))

Here, when the state of the most recent transaction is commit-
ted, the current value of the slot content is returned, whereas if that
transaction is aborted, the old value of the slot content is reused.
When the state of the most recent transaction is active, but it is ac-
tually the current transaction that performed the update, then we
can also just return the current value.8 If the state is active, but
some other transaction has updated the object, we have no choice
but to abort the current transaction, since this method does not have
enough information to determine the original slot that contained
this particular slot content object, which is necessary for nego-
tiating more complex contention resolution. (As we show below,
slot updates are performed by replacing full slot content objects in
deferred-update transactions!) Note that an attempt to retry a trans-
action will throw an error outside of transactions, since there is no
transaction to meaningfully abort, but that such an attempt is useful
semantics under transactions.

The method for slot-value-using-layer associated with
deferred-update-mode is very similar, except that it knows
about the object that stores a reference to the memory location,

8 Note that this case occurs only under transaction: Outside of transactions,
the current transaction is always considered committed (see above).



so it has a chance to wait for it to be updated in case of contention
(when another transaction that performed the last write to the slot
in question is still active).

(define-layered-method slot-value-using-layer
:in-layer deferred-update-mode
((class transactional-class) object slot)
(let ((loc (call-next-method)))
(case (tx-state (most-recent-tx-state loc))

(:committed loc)
(:aborted loc)
(:active
(if (eq (most-recent-tx-state loc)

*current-tx-state*)
loc
... else resolve contention ...)))))

We do not discuss contention managament here in detail. What
can be done, for example, is to retry accessing the memory location
object (as returned by call-next-method) until its corresponding
transaction is either committed or aborted. If this also fails, we
can then try to determine which of the two involved processes is
older, and give it priority to ensure progress by forcing an abort of
the other. Note that, like above, an attempt to eventually retry the
current transaction will throw an error outside of transactions.

Write access to slots for direct-update mode is also very sim-
ilar: Again, when the transaction that performed the last write is
committed or aborted, we can just invoke call-next-method to
perform the actual assignment. When that transaction is still active,
we need to resolve the contention in some way before we can ei-
ther perform the write access or decide to abort. (This definition
does not need to consider semantics when we are inside an atomic
block, because this will be handled in a separate method below.)

(define-layered-method (setf slot-value-using-layer)
:in-layer deferred-update-mode
(new-loc (class transactional-class) object slot)
(let ((old-loc (with-inactive-layers

(transaction stm-mode stm)
(slot-value object slot))))

(case (tx-state (most-recent-tx-state old-loc))
(:committed (call-next-method))
(:aborted (call-next-method))
(:active ... else resolve contention ...))))

Like with the two read methods above, it can happen that an
attempt to write to a slot that is in active use by another process
may result in an error, because there is no transaction to be aborted
outside of transactions.

Under transaction, the deferred-update strategy requires mod-
ified slot access semantics. For read accesses, we need to record
the value just read in the current read set. Apart from that, the read
method for deferred-update-mode is already sufficient, and can
just be invoked using call-next-method.

(define-layered-method slot-value-using-layer
:in-layer deferred-update-transaction
((class transactional-class) object slot)
(let ((current-loc (call-next-method))

(recorded-loc
(gethash (list object slot) *read-set*)))

(if recorded-loc
(if (not (eq recorded-loc current-loc))
(retry-transaction))

(setf (gethash (list object slot) *read-set*)
current-loc))

current-loc))

For write access, we try to store information about the old
slot content in the new memory location object we receive, and
then attempt to replace the old memory location object by way of
compare-and-swap.

(define-layered-method (setf slot-value-using-layer)
:in-layer deferred-update-transaction
(new-loc (class transactional-class) object slot)
(letrec

((perform-write ()
(let* ((old-loc

(with-inactive-layers
(transaction stm-mode stm)

(slot-value object slot)))
(rec-loc
(gethash (list object slot)

*read-set*)))
(if rec-loc

(if (not (eq rec-loc old-loc))
(retry-transaction)))

(case (tx-state
(most-recent-tx-state old-loc))

((:committed :aborted)
(setf (slot-value new-value ’old-value)

(transactional-slot-value old-loc))
(if (not (compare-and-swap

object slot old-loc new-loc))
(perform-write))

new-loc)
(:active
(cond

((eq (most-recent-tx-state old-loc)
*current-tx-state*)

(setf (slot-value old-loc ’value)
(slot-value new-loc ’value))

old-loc)
(t ... resolve contention ...)))))))

(let ((result-loc (perform-write)))
(remhash (list object slot) *read-set*)
result-loc)))

In this method, we first get hold of the memory location object
currently stored in the slot, as above by deactivating all layers
involved in the transaction machinery. We then perform a check
that the object we just replaced is the same as a memory location
object possibly previously recorded by a read access. If that is not
the case, the current write access is invalid and we have to roll back.

Otherwise, we proceed by checking whether the transaction that
performed the last write to the slot in question is committed or
aborted. In that case, we prepare the new memory location we just
received by storing as its old value the value of the current memory
location. (For that purpose, we use transactional-slot-value,
which already returns its new or old value correctly depending on
its transaction state.) We then attempt to atomically replace the old
memory location object by the new one using compare-and-swap,
which returns true if the old location object was still stored in
the slot in question and thus was successful at replacing it, or
returns false otherwise, because some other transaction replaced
the memory location object in the meantime in some other process.
In the latter case, we try another attempt to replace the memory
location, until we succeed.

In case the transaction that performed the last write to the slot
in question is still active, it may just be the current transaction. In
that case, we can just overwrite the current value of the ‘old’ mem-
ory location by the current value of the ‘new’ memory location:
Since no other transaction will attempt to replace a memory loca-



tion owned by an active transaction, we do not need to take further
precautions here. If the active transaction is some other transaction
than the current one, we have to negotiate with that other transac-
tion to resolve the conflict.

After a successful write (in case a compare-and-swap suc-
ceeded, or in case the current transaction owned the ‘old’ location
anyway), we can remove the entry for this particular slot from the
read set before we return the now current memory location.

Deferred-update commit and rollback A commit during a deferred-
update transaction has to check whether all memory locations ac-
cessed in read mode are still the same as currently stored in the
respective slots. Otherwise they were updated by some other trans-
action in between and are not valid anymore. Afterwards, the state
of the current transaction can be set to committed, by performing
a compare-and-swap from active to committed. It is necessary
to use a compare-and-swap operation here because some other
transaction may have forced the current transaction to abort as part
of contention management in between, so we have to ensure that
the state is active immediately before we change it to committed.

(define-layered-method commit-transaction
:in-layer deferred-update-transaction ()
(maphash
(lambda (hash-key rec-loc)
(let* ((object (first hash-key))

(slot (second hash-key))
(cur-loc (with-inactive-layers

(transaction stm-mode stm)
(slot-value object slot))))

(if (not (eq cur-loc rec-loc))
(retry-transaction))))

*read-set*)
(if (not (compare-and-swap

*current-tx-state* ’state
:active :committed))

(retry-transaction)))

Aborting a transaction is even easier: It consists of simply set-
ting the state of the current transaction to aborted.

(define-layered-method roll-back
:in-layer deferred-update-transaction ()
(setf (tx-state *current-txstate*) :aborted))

This concludes the implementation of the STM algorithm based on
deferred updates.

4.3 First Benchmarks
In order to convince ourselves of the viability of our approach,
we have performed some first benchmarks using the two example
strategies above. A major issue is that most benchmarks for paral-
lel programming are nowadays typically developed for static lan-
guages like C++ and Java, rather than for dynamic languages like
Smalltalk and Lisp, so a major part in our effort consisted in metic-
ulously translating existing benchmarks from (in our case) C++.

We are aware of two benchmark suites that can be used for test-
ing software transactional memory, STAMP [2] and Lonestar [14].
While the algorithms in the Lonestar benchmark suite are known to
yield suboptimal performance when software transactional mem-
ory is used to coordinate concurrent threads [15], it is easier to
translate those benchmarks to Common Lisp / CLOS due to the
fact that they are expressed in an object-oriented style. In contrast,
the STAMP benchmark suite primarily consists of imperative algo-
rithms operating on large arrays of basic value types.

We have selected the Delaunay Mesh Refinement algorithm
from the Lonestar suite for testing purposes, which is the first al-

gorithm discussed in [14]. The input for that algorithm is a trian-
gulation of a set of points in a plane, with some triangles marked
as “bad” according to some quality criterion. The algorithm oper-
ates on the direct environments of the bad triangles, and attempts to
improve the quality by retriangulating those areas. Delaunay Mesh
Refinement can in principle easily be parallelized by operating on
several bad triangles in parallel, but this may cause conflicts when
two threads happen to operate on overlapping environments. STM
is an appropriate low-level approach for resolving such conflicts.

We have run Delaunay Mesh Refinement with CSTM in de-
fault mode using the coarse-grained locking semantics, which ef-
fectively yields a sequential algorithm, as well as in direct-update
mode and in deferred-update mode. We have chosen a medium-
sized input consisting of 10156 triangles and 4837 bad triangles
(data set “B” in the Lonestar benchmark suite). On an Intel Xeon
chip (E5345) with eight cores at 2.33 GHz, using LispWorks 6.0
with support for symmetric multiprocessing,9 we achieve an aver-
age runtime of ca. 4 minutes in default mode (using one thread), ca.
4:30 – 4:40 minutes in direct-update mode (using two, four, eight
and sixteen threads), and ca. 4:50 in deferred-update mode (using
two, four, eight and sixteen threads).

The fact that the multi-threaded executions are slower than the
single-threaded ones, and stay relatively constant independent of
the number of threads, confirms the observations about Delaunay
Mesh Refinement and similar algorithms reported previously [15].
The main reason is that in those algorithms, too many read accesses
are monitored and eventually cause rollbacks, although these roll-
backs are conceptually not necessary. It is important to keep in
mind that STM is primarily concerned with correctness, not with
speed. Performance improvements come from choosing and fine-
tuning the right parallelization strategies. For example, the unnec-
essary rollbacks above can be avoided by describing the coordina-
tion in such algorithms at a level of abstraction higher than low-
level memory accesses [15].

The fact that direct-update mode performs somewhat better than
deferred-update mode confirms previous reports about improved
performance of direct-update mode over deferred-update mode [9].

5. Discussion and Related Work
CSTM exposes a relatively straightforward extension interface for
integrating new STM strategies as layers that cut across both read
and write accesses to slots in a program, as well as the atomic
blocks that need to be inserted in the right places of a program,
but can otherwise remain unaware of the concrete STM strategy
in use. The only modification for a program to take advantage
of transactional semantics based on CSTM is that class and slot
definitions must be marked as transactional.

The extension interface can be used in a context-oriented style:
New information can be inserted into explicit memory locations
simply by adding to the existing definition of transactional-
slot-content of the base stm-mode layer of CSTM. The acti-
vation of the slot access semantics as well as commit and rollback
semantics, which are both context-dependent in the sense that they
are different inside and outside of transactions, perfectly align with
the dynamic extent of atomic blocks.

Since the transaction layers are repeatedly activated and deacti-
vated when entering and leaving atomic blocks, it is important that
layer activation and deactivation do not cause serious overhead.
However, we have already reported that these operations can be
implemented efficiently [4], and ContextL uses the optimizations
described in that paper.

It is noteworthy that the direct-update and deferred-update
modes described above are implemented purely in terms of CSTM’s

9 For LispWorks R©, see http://www.lispworks.com.



extension interface. This gives us confidence that other STM strate-
gies can also be implemented on top of CSTM. The core reason
why this is possible is the fact that memory locations are mod-
elled as explicit entities in CSTM, an approach we have already
discussed as part of an interpreter-based solution before [10].

Although our approach is based on ContextL, we expect it to
be transferable to other COP languages as well, such as the ones
discussed in [1]. It should also be possible to transfer our approach
to AOP languages with support for dynamic aspect weaving.

STM implementations for dynamic languages have already
been suggested before: Renggli and Nierstrasz discuss an STM
for Smalltalk [18], while Clojure is a Lisp dialect on top of the
Java Virtual Machine that supports STM [11]. Both approaches
implement each one particular STM approach and do not provide a
dedicated extension interface for plugging in one’s own STM strat-
egy. Gonzalez, Denker and Mens also discuss a sketch of an STM
implementation based on their own context-oriented programming
language Ambience, again providing one particular STM strategy
without providing a more general extension interface [5].

6. Conclusions and Future Work
Software transactional memory can be regarded as a concern that
cuts across various operationally distinct events in a program, that
is, read and write accesses to slots, entering and leaving atomic
blocks, and commits and rollbacks. However, existing STM imple-
mentations and frameworks have not yet accounted for the dynamic
crosscutting nature of STM. Based on our own previous work on
simplifying the extension interface of an STM framework based on
explicit memory locations, we have presented a context-oriented
design for an STM framework. The essential insight is that user-
defined modifications of the operations relevant for implementing
STM can be associated with layers, whose activations and deac-
tivations can be aligned with the atomic blocks defined in a base
program. Especially read and write accesses to slots are highly
context-dependent, in that they differ inside and outside of trans-
actions, and ContextL’s extension of the slot access protocol of the
CLOS MOP proves to be a valuable tool for expressing this context
dependency, a feature we have discussed in this paper for the first
time. Finally, we have shown how two widely known STM strate-
gies can be implemented in our approach, and have gained some
confidence in the viability of our approach by running some first
preliminary benchmarks.

The user interface of CSTM is very straightforward and requires
users only to use define-transactional-class for defining
classes with transactional slots, and to use atomic blocks for wrap-
ping transactions. The extension interface is also relatively straight-
forward and requires the implementer of an STM algorithm only
to inherit from two abstract layers, define how transactional con-
texts are set up and torn down, extend an explicit representation
of memory locations with further information, define both regu-
lar and transactional accesses to such memory locations, and de-
fine additional actions and checks to be performed on commits and
rollbacks. An open research question, though, is how to deal with
different STM algorithms being active at the same time in different
threads when they access the same shared memory locations.

As next steps, we plan to perform more extensive benchmarks
by translating more of the known test suites for STM, more specifi-
cally the STAMP test suite [2]. It would then be possible and inter-
esting to see how well CSTM compares to implementations based
on C++ and Java. We also plan to implement more STM strategies,
for example Clojure’s approach based on multiversion concurrency
control and snapshot isolation [11].
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