
1/7

Extending Advice Activation in AspectS

Robert Hirschfeld
Hasso-Plattner-Institut
Universität Potsdam

Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

Pascal Costanza
Vrije Universiteit Brussel

Programming Technology Lab
 Pleinlaan 2

B-1050 Brussel, Belgien

pascal.costanza@vub.ac.be

ABSTRACT
AspectS provides a mechanism called activation blocks as a
means to control the invocation of advice code at instrumented
join-point shadows. We describe all steps necessary to utilize this
device to adapt the AspectS framework to new situations and to
carry out experiments with new composition properties. As an
example, we exercise this recipe to make advice code process-
aware, emphasizing the flexibility AspectS gained from taking a
framework approach to AOP.

Keywords
AspectS, Dynamic Weaving, Runtime Composition, Reflection,
Meta-programming, Context, Adaptability, Squeak.

1. INTRODUCTION
AspectS is intended to provide an AOP platform for dynamic
environments that is both easy to use and simple to extend. It is
easy to use due to a small framework kernel and no extensions
made to the Smalltalk language. Extensions to AspectS are most
of the time simple to carry out since many of the variation points
needed to do so are either already there or straightforward to
introduce.
Besides enabling developers to tailor their aspect compositions as
needed, this approach gives also some degree of freedom in
experimenting with new composition constructs. Advice qualifiers
and their associated activation blocks are one mechanism allowing
for that.

In the following we describe the steps necessary to add new
compositional properties based on activation blocks. More
specifically, we extend AspectS to support process-specific
advice.

Since we found us to use this kind of extension frequently, we
decided to document one such implementation that other
developers wanting to modify AspectS in a similar manner could
use as an initial reference to get started.

2. ASPECTS
AspectS is described in more detail in [3]. AspectS extends the
Smalltalk metaobject protocol to accommodate the aspect
modularity mechanism, taking great advantage of the reflective
facilities of the Smalltalk system. Here, we provide a trivial
example to summarize its basic pattern of use. More complex
examples including several variations of cflow constructs are
implemented in exactly the same way and available via the
AspectS distribution. Squeak\Smalltalk provides an in-image

console called Transcript for echoing messages sent via show: to
the user. In the following we instrument this notification
mechanism is such a way that every message to be displayed will
be prefixed by the current time. First we create a new aspect class
named TimestampedTranscriptAspect. In the AspectS framework,
each aspect class needs to have AsAspect as its direct or indirect
superclass.

AsAspect subclass: #TimestampedTranscriptAspect
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'AspectS-Examples TimestampedTranscript'

In this class, we implement the following advice method that,
after installation, intercepts all show: messages sent to
TranscriptStream (the actual implementation of Transcript), prints
out the current time, and then passes on the control to show:’s
original implementation. This behavior is mainly expressed in the
before block that states what to execute at the locations (that is,
message sends and receptions) designate by our pointcut
enumeration.

TimestampedTranscriptAspect>>adviceTranscriptStreamShow
 ^ AsBeforeAfterAdvice
 qualifier: (AsAdviceQualifier
 attributes: { #receiverClassSpecific. #cfFirstClass. })
 pointcut: [{
 AsJoinPointDescriptor
 targetClass: TranscriptStream
 targetSelector: #show:. }]
 beforeBlock: [:receiver :arguments :aspect :client |
 Transcript show: '[', Time now printString, '] ']

To restrict our composition further, we provide advice qualifier
attributes. Since we do not want to change the behavior of a
specific but all transcripts, we say so by providing the
#receiverClassSpecific attribute.

Please note that in the before block we ourselves invoke the show:
method that is going to be affected by our advice. To avoid
infinite recursion once our aspect is installed, we provide an
additional advice qualifier attribute, #cfFirstClass, which makes

2/7

sure that our advice code is activated only if this is the first
invocation of that kind in the current flow of control.

The following code illustrates the effect of the installation of our
aspect into the Squeak image.

doIt: [
 | aspect |
 aspect ← TimestampedTranscriptAspect new.
 3 timesRepeat: [Transcript cr; show: Smalltalk bytesLeft].
 aspect install.
 3 timesRepeat: [Transcript cr; show: Smalltalk bytesLeft].
 aspect uninstall.
 3 timesRepeat: [Transcript cr; show: Smalltalk bytesLeft].
]

In our script we first echo the number of bytes currently available
in our image after a garbage collect to the Transcript. There. each
line contains only the number of bytes left, but nothing else. After
we install our TimestampedTranscriptAspect and print the same
information, each line is prefixed with the current time.

Once our aspect is uninstalled or withdrawn from the image, the
information to be displayed appears without the aforementioned
prefix, exhibiting behavior as of previous to the aspect
installation.

Transcript
1051276248
1051276356
1051276292
[9:41:44 pm] 1051274868
[9:41:44 pm] 1051274676
[9:41:44 pm] 1051274600
1051275576
1051275512
1051275448

3. ACTIVATION BLOCKS
In the previous section we explain how advice qualifiers and their
attributes can be applied to affect the activation of advice code.
Here we describe how advice qualifier attributes are taken into
consideration for advice activation by the AspectS framework.

AspectS uses Method Wrappers [1] to instrument both message
sends and receptions. Such wrappers let us execute additional
code before, after, around, or instead of an existing method.
Instead of modifying Smalltalk’s standard lookup process,
Method Wrappers change the objects this lookup process returns.
Normally, each such lookup gives back a compiled method
associated with the selector of the message received, or fails
otherwise. Method Wrappers allow us to decorate compiled
methods to realize the behavior outlined above.

To be used in AspectS, we extended Method Wrappers to be
generic with respect to both the code to be executed and the
conditions under which such code to be executed. We provided
this degree of extensibility since it is impossible to anticipate in
advance all forms of potential use.

The core of our activation mechanism is implemented in the
following isActive method of AsMethodWrapper. All additional
code provided by a wrapper is to be activated only if all activation
blocks associated with it evaluate to true. This is to say that
activation blocks are treated as predicate methods, returning either
true or false as the outcome of their execution. The results
provided by each individual activation block are combined using a
conjunction to determine if the respective method wrapper will
contribute to the desired composition or not.

AsMethodWrapper>>isActive
 | baseSender |
 baseSender ← thisContext baseSender.
 ^ self activators “<Set of: BlockContext>” notEmpty
 and: [self activators allSatisfy: [:aBlock |
 aBlock value: self aspect value: baseSender]]

Here is the simplest activation block possible. It returns always
true and is used to express that the advice code introduced via the
associated wrapper will be executed by all receivers of the
message that are an instance of a specified class.

Note that the code rendered in gray color addresses Squeak-
specific issues and is only provided for sake of completeness.

AsMethodWrapper class>>receiverClassSpecificActivator
 ^ [:aspect :baseSender |
 aspect ← baseSender ← nil.
 true] copy fixTemps

The following activation block allows for class-first cflow advice.
Its activation test examines Smalltalk’s activation stack for one
ore more senders with the same class as that of the receiver. If
there are no more senders with the same class as the receiver’s,
the activation block evaluates to true, otherwise to false. This
example illustrates the power one gains by having access to first-
class representations of reified elements of the execution
environment.

AsMethodWrapper class>>cfFirstClassActivator
 ^ [:aspect :baseSender |
 | lastCfPoint allCfPoints result |
 lastCfPoint ← AsCFlowPoint
 object: baseSender receiver class
 selector: baseSender selector.
 allCfPoints ← thisContext allBaseClientsWithSelector
 collect: [:each |
 AsCFlowPoint
 object: each key class
 selector: each value].
 result ← (allCfPoints occurrencesOf: lastCfPoint) = 1.
 aspect ← baseSender ← lastCfPoint ← allCfPoints ← nil.
 result] copy fixTemps

To decouple developers from the actual implementation of
activation blocks when they work on their aspect and advice code,

3/7

we provide them with attributes such as #receiverClassSpecific
and #cfFirstClass from our example that they can use to configure
an advice qualifier.

Advice qualifier attributes can be associated with a corresponding
activation block in initialize methods like the following two.

AsMethodWrapper class>>initRegularProtoActivators
 self protoActivators
 add: (#receiverClassSpecific
 -> self receiverClassSpecificActivator);
 add: (#receiverInstanceSpecific
 -> self receiverInstanceSpecificActivator);
 add: (#senderClassSpecific
 -> self senderClassSpecificActivator);
 add: (#senderInstanceSpecific
 -> self senderInstanceSpecificActivator).

The two initialize methods (initRegularProtoActivators and
initCFlowProtoActivators) are called from within
AsMethodWrapper class>>initialize.

AsMethodWrapper class>>initCFlowProtoActivators
 self protoActivators
 add: (#cfFirstClass
 -> self cfFirstClassActivator);
 add: (#cfAllButFirstClass
 -> self cfAllButFirstClassActivator);
 add: (#cfFirstInstance
 -> self cfFirstInstanceActivator);
 add: (#cfAllButFirstInstance
 -> self cfAllButFirstInstanceActivator);
 add: (#cfFirstSuper
 -> self cfFirstInstanceActivator);
 add: (#cfAllButFirstSuper
 -> self cfAllButFirstInstanceActivator).

4. PROCESS-SPECIFIC ADVICE
In older versions of AspectS, there was no support for process-
specific advice code [3]. Here we present all steps that were
necessary to achieve process-specific advice composition in
AspectS.

4.1 An Example
We start by implementing the example from [2] (Chapter
Processes, p. 255), demonstrating multi-process behavior in
Smalltalk. Please note that what is commonly called a thread in
many other popular object-oriented programming languages such
as Java is called a process in Squeak/Smalltalk [4].

The original example exhibits Smalltalk’s priority and scheduling
mechanism by starting multiple processes from a workspace and
examining their traces left on the Transcript. Since we want to
instrument parts of the code later on to demonstrate process-
specific aspects more easily, we put that example code into a
class. So, first we add a class ProcessExample with an instance
variable named wordArray and all necessary accessing and
convenience methods.

Object subclass: #ProcessExample
 instanceVariableNames: 'wordArray'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'AspectS-Tests ProcessSpecific'

ProcessExample>>wordArray
 ^ wordArray

ProcessExample>>wordArray: anArray
 wordArray ← anArray.

ProcessExample>> wordArrayAt: anInteger put: aString
 self wordArray at: anInteger put: aString.

ProcessExample>>showWordArray
 Transcript cr; show: self wordArray.

Now we adapt and implement the above mentioned example from
[2].

ProcessExample>>wordProcessExample
 | wordProcess |
 self wordArray: (Array new: 5 withAll: '---').
 wordProcess ← [
 [self wordArrayAt: 1 put: 'now'. self showWordArray]
 forkAt: Processor lowIOPriority "=> 60".
 [self wordArrayAt: 2 put: 'is'. self showWordArray]
 forkAt: Processor userInterruptPriority "=> 50".
 self wordArrayAt: 3 put: 'the'. self showWordArray]
 newProcess
 "activePriority => userSchedulingPriority => 40".
 wordProcess priority: Processor highIOPriority "=> 70".
 self wordArrayAt: 4 put: 'time'. self showWordArray.
 wordProcess resume.
 self wordArrayAt: 5 put: 'for'. self showWordArray.

Evaluating [ProcessExample new wordProcessExample] lets us
observe the following messages on the Transcript.

Transcript
#('---' '---' '---' 'time' '---')
#('---' '---' 'the' 'time' '---')
#('now' '---' 'the' 'time' '---')
#('now' 'is' 'the' 'time' '---')
#('now' 'is' 'the' 'time' 'for')

The result shows that the different processes populate different
elements of the given word array in the order matching their
relative scheduling priority.

4.2 Regular Instrumentation
We add an aspect ProcessExampleIndifferentAspect that is
supposed to embed all words put in the wordArray within leading
and trailing asterisks. Note that this aspect is not yet made
process-specific.

4/7

AsAspect subclass: #ProcessExampleIndifferentAspect
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'AspectS-Tests ProcessSpecific'

ProcessExampleIndifferentAspect>> adviceWordArrayAtPut
 ^ AsAroundAdvice
 qualifier: (AsAdviceQualifier
 attributes: { #receiverClassSpecific. })
 pointcut: [{ AsJoinPointDescriptor
 targetClass: ProcessExample
 targetSelector: #wordArrayAt:put:. }]
 aroundBlock: [:receiver :args :aspect :client :clientMethod |
 clientMethod
 valueWithReceiver: receiver
 arguments: { args first. '*** ', args second, ' ***'. }]

We extend our wordProcessExample into wordProcessExample2
where we make use of our previously developed
ProcessExampleIndifferentAspect aspect.

ProcessExample>>wordProcessExample2
 | wordProcess processIndifferentAspect |
 processIndifferentAspect ←
 ProcessExampleIndifferentAspect new.
 processIndifferentAspect install.
 self wordArray: (Array new: 5 withAll: '---').
 wordProcess ← [
 [self wordArrayAt: 1 put: 'now'. self showWordArray]
 forkAt: Processor lowIOPriority "=> 60".
 [self wordArrayAt: 2 put: 'is'. self showWordArray]
 forkAt: Processor userInterruptPriority "=> 50".
 self wordArrayAt: 3 put: 'the'. self showWordArray]
 newProcess
 "activePriority => userSchedulingPriority => 40".
 wordProcess priority: Processor highIOPriority "=> 70".
 self wordArrayAt: 4 put: 'time'. self showWordArray.
 wordProcess resume.
 self wordArrayAt: 5 put: 'for'. self showWordArray.
 processIndifferentAspect uninstall.

Evaluating [ProcessExample new wordProcessExample2] lets us
observe the following messages on the Transcript.

Transcript
#('---' '---' '---' '*** time ***' '---')
#('---' '---' '*** the ***' '*** time ***' '---')
#('*** now ***' '---' '*** the ***' '*** time ***' '---')
#('*** now ***' '*** is ***' '*** the ***' '*** time ***' '---')
#('*** now ***' '*** is ***' '*** the ***' '*** time ***' '*** for ***')

4.3 Projected Process-specific Advice
We now sketch an aspect implementation that shows how we
would like the use of a process-specific aspect and its advice
appear to a developer. For that, we just make a copy of our
previous aspect class and name it ProcessExampleSpecificAspect.

AsAspect subclass: #ProcessExampleSpecificAspect
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'AspectS-Tests ProcessSpecific'

We keep the advice method, but change the embedding characters
from '***' to '###' to better see the difference in effect to the
previously implemented process-indifferent aspect and its advice.
We also make use of #processSpecific as an additional advice
qualifier attribute to mark this advice as behavior in a process-
specific way. Ideally, this is all that should be necessary to make
an advice process-specific.

ProcessExampleSpecificAspect>>adviceWordArrayAtPut
 ^ AsAroundAdvice
 qualifier: (AsAdviceQualifier
 attributes: { #receiverClassSpecific. #processSpecific. })
 pointcut: [{ AsJoinPointDescriptor
 targetClass: ProcessExample
 targetSelector: #wordArrayAt:put:. }]
 aroundBlock: [:receiver :args :aspect :client :clientMethod |
 clientMethod
 valueWithReceiver: receiver
 arguments: { args first. '### ', args second, ' ###'. }]

We also extend our wordProcessExample2 into
wordProcessExample3 to now make use of our
ProcessExampleSpecificAspect aspect.

ProcessExample>>wordProcessExample3
 | wordProcess processSpecificAspect |
 processSpecificAspect ←
 ProcessExampleSpecificAspect new.
 processSpecificAspect install.
 self wordArray: (Array new: 5 withAll: '---').
 wordProcess ← [
 [self wordArrayAt: 1 put: 'now'. self showWordArray]
 forkAt: Processor lowIOPriority "=> 60".
 [self wordArrayAt: 2 put: 'is'. self showWordArray]
 forkAt: Processor userInterruptPriority "=> 50".
 self wordArrayAt: 3 put: 'the'. self showWordArray]
 newProcess
 "activePriority => userSchedulingPriority => 40".
 wordProcess priority: Processor highIOPriority "=> 70".
 self wordArrayAt: 4 put: 'time'. self showWordArray.
 wordProcess resume.
 self wordArrayAt: 5 put: 'for'. self showWordArray.
 processSpecificAspect uninstall.

Note that the evaluation of [ProcessExample new
wordProcessExample3] will fail since there is no process-specific
behavior implemented yet – neither the #processSpecific advice
qualifier attribute nor its associated behavior!

5/7

4.4 Making AspectS Process-aware
At this time we implement everything necessary to actually make
aspects process-specific. While doing so, we want to allow
process-specific aspects and advice to be associable with one or
more processes at the same time.

We extend AsAspect with one more instance variable called
processes. This new instance variable is used to recall all
processes a particular aspect is associated with.1

Object subclass: #AsAspect
 instanceVariableNames: 'receivers senders senderClasses
 projects processes clientAnnotations advice installed'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'AspectS-Aspects'

We also provide all additional accessing, convenience, and
initialization methods to set the list of processes as made
necessary by both the AspectS framework as well as the client
behavior.

AsAspect>>processes
 ^ processes

AsAspect>>processes: anIdentitySet
 processes ← anIdentitySet.

AsAspect>>initialize
 self
 receivers: IdentitySet new;
 senders: IdentitySet new;
 senderClasses: IdentitySet new;
 projects: IdentitySet new;
 processes: IdentitySet new;
 clientAnnotations: IdentityDictionary new;
 advice: nil;
 installed: false.

AsAspect>>addProcess: aProcess
 ^ self processes add: aProcess

AsAspect>>removeProcess: aProcess
 ^ self processes remove: aProcess ifAbsent: []

AsAspect>>hasProcess: aProcess
 ^ self processes includes: aProcess

We add a process-specific activator method to AsMethodWrapper
class.

1 While it would be an equally valid approach to implement our

extensions in a subclass of AsAspect, we feel that since process-
awareness is a very basic property and it needs to placed in the
most appropriate base class of the AspectS, AsAspect itself.

AsMethodWrapper class>>processSpecificActivator
 ^ [:aspect :baseSender |
 | result |
 result ← aspect hasProcess: Processor activeProcess.
 aspect ← baseSender ← nil.
 result] copy fixTemps

We make sure that the new activator is made known to the system
by updating the appropriate initialization method, and
subsequently initializing the list of activators with the new one.

AsMethodWrapper class>>initAdditionalProtoActivators
 self protoActivators
 add: (#projectSpecific -> self projectSpecificActivator);
 add: (#processSpecific -> self processSpecificActivator).

We can execute [AsMethodWrapper initialize] to make our changes
effective. Now, we evaluate, once again, the code snipped that
failed previously ([ProcessExample new wordProcessExample3])
and observe its printed trace on the Transcript.

Transcript
#('---' '---' '---' 'time' '---')
#('---' '---' 'the' 'time' '---')
#('now' '---' 'the' 'time' '---')
#('now' 'is' 'the' 'time' '---')
#('now' 'is' 'the' 'time' 'for')

Note that nothing has changed compared to the set-up with no
aspects involved. This is because our new aspect is process-
specific, but no process has been made known to our aspect, yet.

Figure 1 of the appendix illustrates all additions to AspectS
necessary to provide process-specific advice activation.

4.5 Applying Process-specific Advice
At this point, we continue to extend our wordProcessExample3
into wordProcessExample4 by making our aspect instance aware
of the process responsible for printing out the first element of the
word array (‘now’).

ProcessExample>>wordProcessExample4
 | wordProcess processSpecificAspect |
 processSpecificAspect ← ProcessExampleSpecificAspect new.
 processSpecificAspect install.
 self wordArray: (Array new: 5 withAll: '---').
 wordProcess ← [
 [processSpecificAspect
 addProcess: Processor activeProcess.
 self wordArrayAt: 1 put: 'now'. self showWordArray]
 forkAt: Processor lowIOPriority "=> 60".
 [self wordArrayAt: 2 put: 'is'. self showWordArray]
 forkAt: Processor userInterruptPriority "=> 50".
 self wordArrayAt: 3 put: 'the'. self showWordArray]
 newProcess
 "activePriority => userSchedulingPriority => 40".
 wordProcess priority: Processor highIOPriority "=> 70".

6/7

 self wordArrayAt: 4 put: 'time'. self showWordArray.
 wordProcess resume.
 self wordArrayAt: 5 put: 'for'. self showWordArray.
 processSpecificAspect uninstall.

The evaluation of [ProcessExample new wordProcessExample4]
yields to the desired trace of print-outs.

Transcript
#('---' '---' '---' 'time' '---')
#('---' '---' 'the' 'time' '---')
#('### now ###' '---' 'the' 'time' '---')
#('### now ###' 'is' 'the' 'time' '---')
#('### now ###' 'is' 'the' 'time' 'for')

4.6 Validating the Desired Behavior
Finally we verify that a process-specific aspect can be associated
with more than one process by adding the process the process-
aware aspect was created in to list of process our aspect is to be
aware of. We do so in method wordProcessExample5.

ProcessExample>>wordProcessExample5
 | wordProcess processSpecificAspect |
 processSpecificAspect ←
 ProcessExampleSpecificAspect new.
 processSpecificAspect
 addProcess: Processor activeProcess.
 processSpecificAspect install.
 self wordArray: (Array new: 5 withAll: '---').
 wordProcess ← [
 [processSpecificAspect
 addProcess: Processor activeProcess.
 self wordArrayAt: 1 put: 'now'. self showWordArray]
 forkAt: Processor lowIOPriority "=> 60".
 [self wordArrayAt: 2 put: 'is'. self showWordArray]
 forkAt: Processor userInterruptPriority "=> 50".
 self wordArrayAt: 3 put: 'the'. self showWordArray]
 newProcess
 "activePriority => userSchedulingPriority => 40".
 wordProcess priority: Processor highIOPriority "=> 70".
 self wordArrayAt: 4 put: 'time'. self showWordArray.
 wordProcess resume.
 self wordArrayAt: 5 put: 'for'. self showWordArray.
 processSpecificAspect uninstall.

The evaluation of [ProcessExample new wordProcessExample5]
leads now to the following trace that meets our expectations.

Transcript
#('---' '---' '---' '### time ###' '---')
#('---' '---' 'the' '### time ###' '---')
#('### now ###' '---' 'the' '### time ###' '---')
#('### now ###' 'is' 'the' '### time ###' '---')
#('### now ###' 'is' 'the' '### time ###' '### for ###')

Instrumentation of ProcessExample>>wordArrayAt: and its
effects are summarized in Figure 2 of the appendix.

5. SUMMARY AND FUTURE WORK
In this paper we explain how dynamic composition properties of
AspectS can be extended by implementing new advice qualifier
attributes and their associated activation blocks. We demonstrate
all steps necessary to do so using process-specific advice as an
example. This implementation is now part of the AspectS release
[5]. With our approach we show the great flexibility gained from a
fully dynamic reflective environment in general and a framework
approach to AOP specifically.

Next steps involve the provisioning of convenience methods that
let us register new advice qualifiers and their associated activation
blocks more dynamically (including the initialization or update of
protoActivators in AsMethodWrapper).

AsMethodWrapper class>>addQualifier: aSymbol activationBlock:
aBlockContext
 self protoActivators add: aSymbol -> aBlockContext.

One of our goals is having a flexible and extensible platform for
further exploring our notion of Context-oriented Programming
(COP, [6]).

6. ACKNOWLEDGMENTS
We want to thank Johan Brichau, Stefan Hanenberg, Michael
Haupt, and the reviews and participants of the EIWAS 2005
workshop for their comments and suggestions.

7. REFERENCES
[1] J. Brant, B. Foote, R. Johnson, D. Roberts. Wrappers to the

Rescue. In Proceedings of the 1998 European Conference on
Object-Oriented Programming (ECOOP), pp. 396-417,
Brussels, Belgium, 1998

[2] A. Goldberg, D. Robson. Smalltalk 80 – The Language and
its Implementation. Addison-Wesley, 1983 (pp. 254-257).

[3] R. Hirschfeld. AspectS – Aspect-Oriented Programming with
Squeak. In M. Aksit, M. Mezini, R. Unland, editors, Objects,
Components, Architectures, Services, and Applications for a
Networked World, pp. 216-232, LNCS 2591, Springer, 2003.

[4] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay. Back
to the Future: The Story of Squeak, A Practical Smalltalk
Written in Itself. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pp. 318-326, ACM Press, Atlanta,
GA, USA, October 5-9, 1997.

[5] AspectS homepage for download (http://www.prakinf.tu-
ilmenau.de/~hirsch/Projects/Squeak/AspectS/).

[6] P. Costanza, R. Hirschfeld. Language Constructs for
Context-oriented Programming - An Overview of ContextL.
Dynamic Languages Symposium, held in conjunction with
OOPSLA 2005, San Diego, October 2005.

7/7

Appendix

Figure 1: All that is necessary to enable process-specific advice activation

Figure 2: Instrumentation and effect of ProcessExample>>wordArrayAt:

