
Dynamic Object Replacement and Implementation-Only Classes

Pascal Costanza
University of Bonn, Institute of Computer Science III

Römerstr. 164, D-53117 Bonn, Germany

costanza@cs.uni-bonn.de

June 27, 2001

Abstract

GILGUL is an extension of the Java programming lan-
guage that allows for dynamic object replacement with-
out consistency problems. This is possible in a semanti-
cally clean way because its model strictly separates the
notions of reference and comparison that are usually sub-
sumed in the concept of object identity. Since GILGUL’s
new operations respect Java’s type system, objects can
still be replaced only by instances of the same class or
any subclasses thereof, but not by instances of any su-
perclass. The concept of implementation-only classes is
an extension of the type system that allows classes to be
declared that must never be used as types. Consequently,
instances of implementation-only classes can always be
replaced by instances of their superclasses. This effec-
tively widens the range of both anticipated and unantici-
pated adaptations.

1 The TAILOR Project

1.1 Unanticipated Adaptation

Software requirements are in a constant flux. Some
changes in requirements can be anticipated by software
developers, so that the necessary adaptations can be pre-
pared for, for example by suitable parameterization or
by application of dedicated design patterns. Within the
scope of these anticipated options for adaptation, soft-
ware can be used already in a flexible way, albeit in re-
stricted limits und with a corresponding increase in de-
velopment effort.

However, unanticipated changes of requirements oc-
cur repeatedly in practice, and the above suggested tech-
niques cannot tackle them by definition. Furthermore,
the manual integration of hooks for any conceivable
eventuality is not a feasible option, since this dramati-
cally decreases reliability, efficiency and maintainability
of systems.

Alternatively, programming languages and runtime
systems should be equipped with features that allow for
far reaching manipulations of program internals without
destructively modifying its source code. This leads to an

increase of options for unanticipated adaptations as well
as a decrease of effort to prepare for anticipated adapta-
tions. Therefore the structure of programs can be kept
much simpler from the outset and they can be focussed
on solving their primary tasks.

In order to provide for this significant simplifica-
tion of software development, the goal of the TAILOR
Project at the Institute of Computer Science III of the
University of Bonn [22] is to conceive and implement
enhancements of programming languages and runtime
systems to allow for unanticipated adaptability of soft-
ware. In doing so, special attention is payed to the fol-
lowing issues.

1.2 Component-Oriented Software

The focus on Component-Oriented Software pushes the
limits even further, since it generally is not required that
components can be modified in unanticipated ways when
being integrated into a system. On the contrary, com-
ponents usually are deployed using a compiled format,
and their source code is not available for modifications.
Even if the source code can be accessed in some cases,
destructive modifications are still not feasible, since they
would lapse in the presence of new versions of a compo-
nent.

However, it is still highly desirable to be able to use
components in unanticipated contexts and with unantic-
ipated adaptations. How can such unanticipated adapta-
tions be carried out on a software component when only
its interfaces are guaranteed to be known and when the
need to update to new versions in the future have to be
taken into account?

1.3 Reduction of Downtime

Essentially, unanticipated adaptations of software can
take place at two points in time. They can be performed
before a program is being linked into its final form, or
they can happen during runtime.

Adaptations before linktime can be tackled by sys-
tems that allow for transformations of source code or
similar modifications of binary representations of com-
ponents [13]. Changes to software that are carried out

1



old

new

Figure 1: If an exchange of objects is executed by man-
ual redirection of references, message sends can occur to
both objects in between, probably leading to an inconsis-
tent state.

using these systems can be made effective only by stop-
ping an old version of a program and starting the new
one. This results in downtimes that can be very long de-
pending on the complexity of a program. These down-
times induce high costs and possibly determine an appli-
cation’s success or failure.

Complete elimination of downtimes can be obtained
either by employing techniques that allow for anticipated
adaptations during runtime (design patterns, etc.), in-
cluding the restrictions and disadvantages that are dis-
cussed above. Alternatively, runtime systems must be
provided with features that allow for subsequent unan-
ticipated adaptations of an already active program.

1.4 Challenges

Accordingly, the TAILOR Project deals with enhance-
ments of programming languages and runtime systems
that allow for unanticipated adaptability of software on
the stringent condition that software components are to
be included whose source code is not available, and that
modifications can still be made on already active pro-
grams.

Under what circumstances are such kinds of adapta-
tions still feasible? What are the outer limits that re-
strict the degree of adaptability? What are the deploy-
ment costs of the envisioned enhancements? What con-
clusions can be drawn for the design of programming
languages, runtime systems, and other software devel-
opment tools?

The close examination of these questions in the
course of the TAILOR Project gains insights that are
valuable for the development of adaptable software in
the general case as well.

2 Dynamic Replacement of Objects

In principle, unanticipated adaptation can always be
dealt with by manual redirection of references. If you
know the reference to an object and want to add or re-
place a method or change its class, you can simply as-
sign this reference a new object with the desired prop-

referentsreferences

object table objects with

comparands

Figure 2: Identity Through Indirection — references to
objects are realised as OOPs — combined with Identity
Through Surrogates — each object stores a comparand.

erties. The new object can even reuse the old object by
some form of delegation [12], so that a recovery of the
old state is not needed.

However, there are two consistency problems in-
volved in this approach on the conceptual level. Firstly,
if there is more than one reference to an object, they all
must be known to the programmer in order to consis-
tently redirect them. Secondly, even if all references are
known, they have to be redirected to the new object one
by one. This approach is likely to lead to an inconsis-
tent state of the involved objects if message sends via
these references occur during the course of the redirec-
tions (for example within another thread; see figure 1).

It would be straightforward if we could simply “re-
place” an object by another one without changing the
involved references. Such a replacement would be an
atomic operation and hence, avoids the consistency prob-
lems shown above. We have discussed this subject pre-
viously on the basis of a specific example in [6]. In that
paper we have also shown that a dissection of the concept
of object identity and a strict separation of the included
notions of reference and comparison is needed in order
to introduce an operator for dynamic object replacement
into a programming language.

This can be illustrated with an implementation tech-
nique called “Identity Through Indirection” in [11]:
Here, a reference to an object is realised as an object-
oriented pointer (OOP). An OOP points to an entry in an
object table which holds the actual memory addresses.
Since we do not want to restrict our model to this imple-
mentation technique, we abstract from this terminology
and say that object references point to entries which hold
referents that represent the actual objects (see figure 2).1

In our approach, references are never compared.
To be able to compare objects we combine “Iden-
tity Through Indirection” with “Identity Through Sur-

1An efficient implementation scheme is outlined in section 6.

2



o1

o2

o3

(1) o2 = o1;

o1

o2

o3

(2) o2 #= o3;

Figure 3: Referent Assignment: After execution of o2 #= o3, all three variables refer to the same object. Since o1
holds the same reference as o2, it is also affected by this operation.

rogates” [11]. Each object is supplemented with an at-
tribute that stores a comparand. Comparands are system-
generated, globally unique values that cannot be manip-
ulated directly by a programmer. The comparison of ob-
jects (o1 == o2) then means the comparison of their com-
parands (o1.comparand == o2.comparand), but they are
never used for referencing.2

2.1 GILGUL

Based on this scheme, we outline the programming lan-
guage GILGUL in the following sections. It is an ex-
tension of Java that is currently being developed at the
Institute for Computer Science III of the University of
Bonn. It introduces means to manipulate referents and
comparands and has been carefully designed not to com-
promise compatibility with existing Java sources.

There are four levels that can be manipulated when
dealing with variables: the reference and the object level
that already exist in Java, and the referent and the com-
parand level that are new in GILGUL. A class instance
creation expression (new MyClass(...)) results not only
in the creation of a new object, but also in the creation of
a new reference, a new referent and a new comparand.
The class instance creation expression returns the refer-
ence to the object’s referent, which in turn has the com-
parand among its attributes.

2.2 Operations on Referents

In GILGUL, the referent assignment operator #= is in-
troduced to enable the proposed replacement of objects.3

The referent assignment expression o1 #= o2 lets the ref-
erent of the variable o1 refer to the object o2 without ac-
tually changing any references. Effectively, this means
that all other variables which hold the same reference as

2In [11] this additional attribute is named surrogate. Elsewhere,
names like “key” and “identifier”, or acronyms like “OID” and “id” are
used for this concept. However, these and other terms that are found
in the literature might raise the wrong associations. In our approach,
we have originated the artificial word comparand to stress that this
attribute is a passive entity that is never used for referencing, but strictly
within comparison operations only.

3The hash symbol # is meant to resemble the graphical illustration
of an object table.

o1 refer to the object o2, too. This can be realised sim-
ply by copying the referent of o2 to the entry of o1 in the
object table.

Consider the following statement sequence.

o1 = new MyClass();
o2 = o1;
o2 #= o3;

After execution of the referent assignment, all three
variables are guaranteed to refer to the same object o3,
since after the second assignment, o1 and o2 hold the
same reference (see figure 3).

Figure 3 also illustrates why a strict separation of
reference and comparison is needed in order to allow
for this kind of manipulations. Assume that you want
to compare o2 and o3 after execution of the statement
sequence given above, resulting in the scenario on the
right-hand side of figure 3. In this situation, compari-
son of variables without the use of comparands is am-
biguous on the conceptual level, since comparison of
the references would yield false, whereas comparison of
the referents would yield true. The decision for one or
the other option would be arbitrary and cannot be jus-
tified other than by implementation-specific considera-
tions only. Therefore, the only reasonable way to go is
to opt for comparison of properties that are stored in-
side of the involved objects and thus make comparison
of variables unambiguous.

Note that the referent assignment operator #= is a
reasonable language extension due to the fact that the
standard assignment operator = that is already defined in
Java copies the reference from the right-hand operand to
the left-hand variable, but not the referent stored in the
respective entry in the object table.

Since the null literal does not refer to any object, the
referent assignment is prevented from being executed on
null. The expression null #= o2 is rejected by the com-
piler, and o1 #= o2 throws a GilgulRestrictionException
when o1 holds null.4 This ensures that a programmer is

4The GilgulRestrictionException is an unchecked exception, so
this case is similar to the throw of a NullPointerException when at-
tempting to access the properties of an object that holds null. Both
kinds of exception can be avoided by testing variables against null be-
forehand.

3



not able to erroneously redirect all variables holding null
to a non-null object. Note, however, that o1 #= null is
valid when o1 does not hold null and redirects all vari-
ables having the same reference as o1 to null.

2.3 Operations on Comparands

It is obvious from a technical point of view that compara-
nds may be copied freely between objects. There are, in
fact, good reasons on the conceptual level to allow for
copying of comparands. For example, decorator objects
usually have to “take over” the comparand of the deco-
rated object so that comparison operations that involve
“direct” references to a wrapped object yield the correct
result. Other usage scenarios are given in [5].

Comparands are introduced in GILGUL by means of a
(final) pseudo-class java.lang.Comparand which can be
used to create new comparands via class instance cre-
ation expressions (new Comparand()). By default, the
definition of java.lang.Object includes an instance vari-
able of this type, as follows.

public class Object {
public Comparand comparand;
...

}

The equality operators == and != that are already de-
fined on references in Java are redefined in GILGUL to
operate on comparands, such that o1 == o2 means the
same as o1.comparand == o2.comparand, and o1 != o2
means the same as o1.comparand != o2.comparand.

Given these prerequisites, we can let a wrapper “take
over” the comparand of a wrapped object in order to
make them become equal by simply copying it as fol-
lows: o1.comparand = o2.comparand.

Ensuring the uniqueness of a single object is always
possible by assigning a freshly created comparand as fol-
lows: o1.comparand = new Comparand().

The comparand of the null literal is prevented from
being accessed via null.comparand, or o1.comparand
when o1 holds null, so it cannot be copied to other ob-
jects, and it cannot be replaced. An attempt to ac-
cess null.comparand is rejected by the compiler, and
o1.comparand throws a GilgulRestrictionException when
o1 holds null. This ensures that testing equality against
null is guaranteed to be unambiguous.

Since comparands cannot be manipulated directly,
there are no limitations on how they are implemented
in a concrete virtual machine. The only require-
ment they have to fulfil is that if o1.comparand and
o2.comparand have been generated by the same (dif-
ferent) class instance or comparand creation expression,
then o1.comparand == o2.comparand yields true (false),
and o1.comparand != o2.comparand yields false (true).

For example, a reasonable and efficient implemen-
tation of comparands are 64-bit unsigned integers with
comparand creation being accomplished by increment

of a global counter.5 This scheme provides for approxi-
mately 10 billion unique comparands per second for half
of a century.6

Still, the actual implementation of comparands is hid-
den from programmers. Especially, GILGUL prevents
comparands from being cast to any other type and, for
example, does not allow arithmetic operators to be exe-
cuted on comparands.

2.4 Operations on References and Objects

Besides GILGUL’s new operations on referents and com-
parands, the operations on references and objects are
still available as a matter of course. However, there are
some interdependencies between the standard methods
equals(...) and hashCode() and the ability to copy com-
parands between objects. As a consequence, the stan-
dard definition of hashCode() has been changed to re-
turn a hash code value for an object’s comparand. More
details on this subject are given in [6].

3 Declaration of Restrictions

GILGUL offers the possibility of declaring restrictions on
what operations are valid on concrete referents and com-
parands. Since references and comparands are created
at the same time as their initially corresponding objects
via class instance creation expressions, these restrictions
have to be given in constructor declarations as follows.

class C {
public C()[#fixed, bound] {...}

}

The possible restrictions are fixed, bound or none for
comparands, and #fixed, #bound or none for referents.

Restricitions on Comparands If no restriction is de-
clared for a comparand, it may be copied or replaced
freely. If a comparand is declared as fixed, it cannot be
replaced by another comparand, but it may be copied
elsewhere. If a comparand is declared as bound, it
may neither be replaced nor copied, which means that
a bound comparand is implicitly fixed.

The rationale behind this implication is that if a pro-
grammer declares a comparand as bound, he/she wants
to guarantee that there does not exist a copy of this com-
parand elsewhere. However, if a bound comparand could
be replaced by a comparand of another object, this guar-
antee would be violated, because the other object could
not be prevented from using the latter comparand.

5This must be synchronized in a multi-threaded environment, since
write accesses to 64-bit values are usually not atomic.

6On the other hand, 32-bit values are usually not big enough to
ensure uniqueness for long-running applications. At a rate of 1000
comparands per second, they wrap around after roughly 6 weeks.

4



oldObject

newObject

orgObject

Figure 4: Naive application of oldObject #= newOb-
ject results in an unwanted cycle: When newOb-
ject.orgObject holds the same reference as oldObject be-
forehand, it will refer to newObject afterwards.

Restrictions on Referents Similarly, if no restriction
is declared for a referent, it may be copied or replaced
freely. If a referent is declared as #fixed, it cannot be
replaced by another one, but it may be copied elsewhere.
If a referent is declared as #bound, it may neither be
replaced nor copied, which means that a #bound refer-
ent is implicitly #fixed. The rationale is the same as for
comparands.

These constructs allow one to flexibly declare detailed
restrictions on comparands and referents, ranging from
the allowance of all operations introduced in the previ-
ous sections to the reduction to the “classic” approach of
dealing with object identity. For example, consider the
following class declaration.

class C {
public C()[bound, #bound] {...}

}

Instances of this class can neither have their referents
nor comparands replaced nor copied.

Note that in contrast to the standard access modi-
fiers of Java (public, protected, private), these restrictions
on comparands and referents are not attached to vari-
ables and consequently cannot be checked statically in
the general case. Therefore, attempts to access compara-
nds via o1.comparand and referent assignments (o1 #=
o2) may throw instances of GilgulRestrictionException.
The restrictions imposed on the null literal in sections
2.2 and 2.3 can be restated as if null’s “constructor” had
been declared as [bound, #fixed], so the presumed ex-
ceptional cases for null are direct consequences of this
“declaration”.

Further note that GILGUL’s flexibility comes at the
price of an increased complexity of contracts, since it
still must be determined which kinds of referent assign-
ment and comparand assignment are valid for concrete
classes or objects. The possible restrictions on compara-
nds and referents just help to make these contracts more
explicit, but they do not reduce their complexity at the

oldObject

newObject

orgObject

tmp

Figure 5: Correct application of oldObject #= newOb-
ject: When newObject.orgObject holds a different refer-
ence to the same object as oldObject beforehand, it will
still refer to the former oldObject afterwards, since the
temporary reference is not affected. Therefore, the un-
wanted cycle is avoided.

conceptual level, as is the case for the standard access
modifiers [14].

3.1 Example of Use

Returning to our given problem, we are now able to ap-
ply the new operations to achieve the desired replace-
ment of an object atomically. We can apply oldObject
#= newObject to let newObject replace oldObject con-
sistently for all clients that have references to oldObject.

However, one has to be careful when newObject
wants to refer to oldObject in order to delegate messages
that it cannot handle by itself. Regard the following
naive sequence of operations.

newObject.orgObject = oldObject;
oldObject #= newObject;

This would be erroneous, because afterwards newOb-
ject.orgObject would refer to newObject, since it contains
the same reference as oldObject according to the first as-
signment. This, of course, leads to a cycle and there-
fore, to non-terminating loops for messages that cannot
be handled by newObject (see figure 4). The following
statement sequence however is correct (see figure 5).

// let a new reference refer to oldObject
tmp #= oldObject;

// use tmp instead of
// oldObject for forwarding

newObject.orgObject = tmp;

5



C

D E

Figure 6: One might want to replace an instance of class
D by instances of class C or E.

// ensure that equality behaves well
newObject.comparand

= oldObject.comparand;

// tmp and so newObject.orgObject
// remain unchanged

oldObject #= newObject;

The actual “replacement” of oldObject is initiated by
the last operation, and thus is indeed atomic. Further
note that the temporary variable can be used to revert the
replacement by application of oldObject #= tmp.

However, this idiom is only needed when newObjects
needs to reuse oldObject. Otherwise, a “simple” replace-
ment is sufficient. In this case, reversal of a replacement
can also be achieved by the use of an additional refer-
ence, but it is not needed for forwarding purposes.

As we can see, in all of these variants, GILGUL’s new
operations give the programmer the possibility to “re-
place” the former object atomically and thereby relieves
him/her from having to deal with any consistency prob-
lems. Furthermore, the involved objects need not antici-
pate such modifications, reducing the complexity of the
development of actual components to a great extent.

4 Type Issues

The referent assignment operator #= respects Java’s
type system. In the following sections we explore what
this actually means and especially show that this may
lead to unnecessarily restricted situations. An extension
of Java’s type system is presented afterwards that allows
pure implementation classes to be declared that do not
define new types. This is a novel approach, which to our
knowledge is not available in any previous programming
language. This extension allows the restrictions to be re-
solved, which are associated with the use of the referent
assignment operator.

4.1 Additive and Subtractive Replacement

The referent assignment operator allows an object to be
replaced always by another one that implements at least
the same types (additive replacement). A special case
is the replacement by an object that is an instance of

TCPConnection

TCPEstablished TCPListen TCPClosed

Figure 7: An example of the State Pattern. Only TCP-
Connection is used as a type.

exactly the same class, but this statement also includes
objects that are instances of any of the old object’s sub-
classes. This is a direct consequence of the Liskov Sub-
stitution Principle [19].

The situation becomes more complex when you want
to replace an object that implements an unrelated type.
For example, given the class hierarchy of figure 6, you
might want to replace an instance of class D by an in-
stance of class C or E (subtractive replacement). This
situation for example occurs in a variation of the State
Pattern [8], where these classes represent states and a
change of state is expressed by a replacement of a state
object. Assume that you want to avoid the use of for-
warding in the implementation of the State Pattern, but
instead want to consistently express state changes for all
clients that refer to a state by application of the referent
assignment operator.

In this and similar situations, before replacement of
an object by another one, it must checked dynamically
that the old object is referenced only by variables that
expect it to implement the intersection of the types im-
plemented by both the old and the new object. Therefore,
the runtime system has to keep track of all references to
an object and their respective types. However, in order to
ensure that subtractive replacements are always possible
whenever needed, an extension of Java’s type system is
needed.

4.2 Implementation-Only Classes

On closer examination of an example application of the
State Pattern, as depicted in figure 7, it can be noticed
that it is likely that classes TCPEstablished, TCPListen
and TCPClosed are never needed as actual types of their
own. Instead, all clients that are in need of a TCPCon-
nection always use this general class type. This fact can
be expressed explicitly in GILGUL by adding the modi-
fier implementationonly to the classes that are not needed
as types (all except for TCPConnection) as follows.

implementationonly class TCPEstablished
extends TCPConnection

{...}
Afterwards, these classes can still be used as any other

class in most respects, for example within instance cre-
ation expressions. However, they cannot be used as types

6



C

D
<<implementationonly>>

E
<<implementationonly>>

public void m()this is a new
method in D

Figure 8: How can a new method in an implementation-
only class be called from the outside?

anymore, in the sense that variables must not be declared
as being of a type of an implementation-only class. Con-
sequently, instances of these classes (TCPEstablished,
etc.) can always be replaced by instances of any class of
the given hierarchy, since they all implement the same
set of types (which consists of the type of TCPConnec-
tion) by definition. This property results in the desired
applicability of subtractive replacement.

4.3 Cast Expressions

There is still a restriction involved in the declaration of
implementation-only classes that has not been addressed
yet. Assume that in figure 6 classes D and E are declared
as implementation-only classes, but for example D addi-
tionally defines a public method m() which is not defined
in the other classes C and E (see figure 8).

How can this method ever be called from outside of
class D? The only way instances of class D can be used
is via references of type C as follows: C obj = new D().

Sending the message m() to obj would result in a
compile-time error, since m() is not included in the in-
terface of C.

For this reason, GILGUL makes an exception from the
general rule that implementation-only classes must never
be used as types in the case of cast expressions. There-
fore, message m() can be sent to obj by casting obj to
class D beforehand, as follows: ((D)obj).m().

This exceptional case does not conflict with the origi-
nal goal of implementation-only classes, that is to allow
for subtractive object replacement. Variables which are
cast to an implementation-only class still cannot be as-
signed to variables that are declared to be of this very
class type, because the restriction still holds that it must
not be used as a type. Therefore, in the very moment of
applying the referent assignment operator to an instance
of an implementation-only class, it is still ensured that
there are no variables in the running system that expect
the new object to implement the old object’s class type.

4.4 The with Statement

In order to conveniently express cascaded method calls
to the same variable in the presence of implementation-
only classes, GILGUL introduces a with statement that is
reminiscent of the similar statement in the programming
language Oberon [16]. In GILGUL, it can be used as
follows: with (obj instanceof D) {...}.

Its effect is that obj is regarded as an instance of the
respective class for the scope of the following (block)
statement. The type given in the with condition can
be any interface or class type, including the type of an
implementation-only class. (This is the second and last
exception from the rule that implementation-only classes
must never be used as types.) Given this statement, a call
to a method defined in an implementation-only class can
be expressed as follows.

with (obj instanceof D) {
obj.m();
...
obj.otherNewMethodsInD();

}
Note that whereas in Oberon the with statement is in-

troduced to allow for compiler optimization, such that
code for the with condition is emitted only once, in
GILGUL the with statement is syntactic sugar only. Since
the object referred to by the variable in the with condition
can always be replaced by another object (for example
within another thread), the condition might not hold for
the following block completely, possibly resulting in a
class cast exception at any place within that block where
the variable is actually used.

4.5 Relation to Java’s Interfaces

Apart from the confined use of implementation-only
classes as types, they do not differ from usual classes.
Especially, they are allowed to implement any interface,
as follows.

implementationonly class C
extends D implements I

{...}
Note, however, that this declaration introduces a new
type into the class hierarchy if interface I is not imple-
mented by any of C’s superclasses. As soon as a variable
of type I refers to an instance of class C, this instance
can be replaced only by objects that simultaneously are
instances of any subclass of D and implement I.

Yet, we have not chosen to disallow implementation-
only classes to implement interfaces, since this feature
can be utilized for a clean separation of types and imple-
mentations as follows.

interface I {...}

implementationonly class C implements I
// Note that C has no superclass.
{...}

7



Since the main purpose of Java’s concept of interfaces
is the declaration of types, we also have not chosen to al-
low for some kind of “implementation-only interfaces”
(or better: “optional interfaces”). This could have been
useful in order to group related methods into such inter-
faces without declaring new types, which would be sim-
ilar to Smalltalk’s concept of categories. This also could
have helped to avoid the declaration of new types just to
introduce application-wide constants. However, the first
use is only of marginal value, and the second stretches an
unfortunately widely adopted abuse of Java’s interfaces
too far.

4.6 Relation to Unanticipated Adaptation

The introduction of implementation-only classes fits per-
fectly to the goal of widening the range of unanticipated
adaptations. It is always possible to extend an exist-
ing class hierarchy by additional implementation-only
classes and thus allow for both additive and subtractive
object replacements. There is no need to change existing
classes, so this feature can be used for third-party com-
ponents without further effort.

The possibility to introduce new methods into an
implementation-only class without restricting the re-
placeability of its instances also improves adaptability.
Since implementation-only classes can be used as types
in cast expressions, these new methods can be called
within unrelated classes that yet are aware of these new
methods. Still, the existing class hierarchy does not need
to be changed for this purpose.

The fact that casts can be checked dynamically only,
and therefore might raise class cast exceptions, may be
regarded as a disadvantage of this proposal. However,
this is only the flipside of the possibility to declare op-
tional methods, which in turn is a benefit that otherwise
cannot be expressed easily. Implementation-only classes
effictively decouple declarations of optional properties
on the one hand, that virtually can be added to and re-
moved from an object, and the actual use of such op-
tional properties on the other hand, which of course may
result in the temporary absence of these properties.

Other approaches that allow for optional properties
insist on their introduction into the existing class hier-
archy in order to allow for compile-time checks of the
sound use of these properties, but in this way they simul-
taneously narrow the range of unanticipated adaptations
of third-party components. See for example the concept
of empty methods in Component Pascal [21] which are
similar to abstract methods but default to empty method
bodies in order to avoid exceptions during runtime.

Implementation-only classes are not only useful in
conjunction with referent assignments, but also with
other programming language constructs, like Generic
Wrappers [3] or Delegation [12]. For example, Generic
Wrappers could be enabled to dynamically change their
wrappees to instances of the wrappee’s superclass, if the
wrappee is an instance of an implementation-only class.

Currently, Generic Wrappers do not allow for the sub-
tractive exchange of wrappees.

5 Related Work

GILGUL is the first approach known to the author that
strictly and cleanly separates the notions of reference and
comparison on the level of a programming language. An
overview of related work centered around the theme of
object identity is given in [6].

Note that this separation of object identity concerns
is orthogonal to the usual distinction between reference
semantics and value semantics that is found for exam-
ple in Smalltalk [18], Eiffel [15], and Java [1]. These
languages allow programmers to choose from these se-
mantics when comparing variables, but they all still rely
on comparison of references in order to establish object
identity.7 For this reason, object identity usually coin-
cides with reference semantics. In contrast, our approach
relies on comparands to determine (logical) identity, and
this opens up new degrees of flexibility.

Microsoft’s component object model COM [2] sep-
arates object identity and references to the degree that
it generally does not require components to return the
same reference each time when a specific interface is re-
quested. However, in order to enable determination of
object identity by comparison of the special IUnknown
reference, it is required that it must never change as
an exceptional case. Again, object identity and refer-
ence semantics coincide and therefore, COM compo-
nents cannot be replaced easily during runtime, but only
if they explicitly are prepared for dynamic replacement.
COM’s monikers provide for an alternative mechanism
of object identification that allow the physical imple-
mentation of objects to change occasionally. However,
monikers are used primarily as a basis for linking and
persistence in COM, but not as a general reference mech-
anism. After a client has bound to an object that is iden-
tified by a moniker, this object is subsequently accessed
via standard references (including IUnknown).

The goal of separating interfaces and classes has been
proposed explicitly first by Cook et al. [4] and, for exam-
ple, has been addressed in Emerald [10], Sather [20] and
Java [1]. However, whereas it is possible to declare pure
interfaces/types in one or the other way in all of these
approaches, the declaration of classes still implies the
accompanying (implicit or explicit) declaration of inter-
faces in order to use newly declared properties from the
outside. In GILGUL, it is possible to declare pure im-
plementation classes that must not be used as types ex-
cept within cast expressions. In this way, GILGUL “com-
pletes” the separation of types and classes that has been
initiated with the former approaches.

7Whether the actual semantics of comparison is defined in the re-
spective classes or must be determined by choosing from different
comparison operators/methods varies from language to language. A
thorough examination of this issue is given in [9].

8



Newer approaches that head for subtractive object re-
placement, and modify the type system for this purpose
in a similar way, are Fickle [7] and Wide Classes [17].
However, these approaches still do not allow for decla-
ration of classes that must not be used as types.

6 Conclusions and Future Work

We have designed the programming language GILGUL,
a compatible extension to Java. It introduces the pseudo-
class Comparand and the referent assignment operator
#=. It also changes the definition of the existing equality
operators == and != according to the GILGUL model.

This model is a generalization of what can be ex-
pressed in terms of object identity in current object-
oriented programming languages. It allows one to flex-
ibly declare detailed restrictions on the object level as
needed, ranging from the unrestricted applicability of
GILGUL’s new operations to the reduction to the tradi-
tional stringent restrictions placed on object identity.

We have shown how GILGUL’s new operations can
be applied for the purpose of dynamic object replace-
ment without the need to deal with consistency prob-
lems. We have investigated restrictions that result from
the type soundness of the referent assignment operator.
We have then proposed an extension of Java’s type sys-
tem that allows pure implementation classes to be de-
clared that must not be used as types. This novel ap-
proach “completes” previous efforts to separate pure in-
terfaces from classes that, however, still define types of
their own. It effectively widens the range of both antici-
pated and unanticipated adaptations.

Currently, a compiler and runtime system for GILGUL

is being developed at the University of Bonn. We are
modifying a concrete implementation of the Java Virtual
Machine and attempt to include optimizations, for ex-
ample the use of direct pointers to an object as long as
possible until an extra level of indirection is inevitable,
and the subsequent reversal to direct pointers as soon as
this extra level has become unnecessary. Future work
also includes a formal proof of type soundness.

An issue we have not discussed in this paper is the
semantics of dynamic object replacement in the pres-
ence of methods that simultaneously execute on the tar-
get object. Essentially, if the active method is part of
the same thread as the attempt at replacement an execp-
tion is thrown, and if these actions are part of different
threads they are synchronized accordingly. Details will
be reported elsewhere.

6.1 Acknowledgements

The author thanks Tom Arbuckle, Michael Auster-
mann, Peter Grogono, Arno Haase, Günter Kniesel,
Thomas Kühne, Sven Müller, James Noble, Markku
Sakkinen, Oliver Stiemerling, Dirk Theisen, Kris De

Volder and many anonymous reviewers for their critical
comments on earlier drafts and related publications.

This work is located in the TAILOR project at the
Institute of Computer Science III of the University of
Bonn. The TAILOR project is directed by Armin B. Cre-
mers and supported by Deutsche Forschungsgemein-
schaft (DFG) under grant CR 65/13.

References

[1] K. Arnold and J. Gosling. The Java Programming Lan-
guage, Second Edition. Addison-Wesley, 1998.

[2] D. Box. Essential COM. Addison-Wesley, 1998.
[3] M. Büchi and W. Weck. Generic Wrappers. in: ECOOP

2000. Proceedings, Springer.
[4] W. R. Cook, W. C. Hill, and P. S. Canning. Inheritance is

not subtyping. in: POPL ’90. Proceedings, ACM Press.
[5] P. Costanza and A. Haase. The Comparand Pattern. ac-

cepted for EuroPLoP 2001, Irsee, Germany.
[6] P. Costanza, O. Stiemerling, and A. B. Cremers. Object

Identity and Dynamic Recomposition of Components. in:
TOOLS Europe 2001. Proceedings, IEEE Computer Soci-
ety Press.

[7] S. Drossopoulou, F. Damiani, M. Dezani, and P. Giannini.
Fickle: Dynamic Object Reclassification. in: ECOOP
2001. Proceedings, Springer.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[9] P. Grogono and M. Sakkinen. Copying and Comparing:
Problems and Solutions. in: ECOOP 2000. Proceedings,
Springer.

[10] E. Jul, R. K. Raj, E. D. Tempero, H. M. Levy, A. P. Black,
and N. C. Hutchinson. Emerald: A General-Purpose Pro-
gramming Language. Software – Practice and Experience,
1991, 21(1):91-118.

[11] S. N. Khoshafian and G. P. Copeland. Object Identity. in:
OOPSLA ’86. Proceedings, ACM Press.

[12] G. Kniesel. Type-Safe Delegation for Run-Time Compo-
nent Adaptation. in: ECOOP ’99. Proceedings, Springer.

[13] G. Kniesel, P. Costanza, and M. Austermann. JMangler
— A Framework for Load-Time Transformation of Java
Class Files. accepted for IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM 2001),
Florence, Italy, 2001.

[14] G. Kniesel and D. Theisen. JAC — Access Right Based
Encapsulation in Java. Software – Practice and Experi-
ence, 2001, 31(6):555-576.

[15] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[16] M. Reiser and N. Wirth. Programming in Oberon – Steps

Beyond Pascal and Modula. Addison-Wesley, 1992.
[17] M. Serrano. Wide Classes. in: ECOOP ’99. Proceedings,

Springer.
[18] D. N. Smith. Smalltalk FAQ. http://www.dnsmith.com/

SmallFAQ/, 1995.
[19] B. Liskov. Data Abstraction and Hierarchy. ACM SIG-

PLAN Notices 23, 5, May, 1988.
[20] C. Szyperski, S. Omohundro, S. Murer. Engineering a

Programming Language: The Type and Class System of
Sather. Technical Report TR-93-064. The International
Computer Science Institute, Berkeley, CA, USA, 1993.

[21] C. Szyperski. Component Software – Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

[22] The Tailor Project. http://javalab.cs.uni-bonn.de/research
/tailor/

9


