
Independent Extensibility for Aspect-Oriented Systems

Pascal Costanza, Günter Kniesel, and Michael Austermann
University of Bonn, Institute of Computer Science III

Römerstr. 164, D-53117 Bonn, Germany

{costanza|gk|austerm }@cs.uni-bonn.de

April 15, 2001

Abstract

So far, there is no satisfactory means to safely combine
aspects that have been developed independently. In the
general case, the process of jointly applying different
aspects is not guaranteed to produce complete and un-
ambiguous results. This paper shows that in the rel-
evant case of pure interface modifications, complete-
ness, uniqueness and independent extensibility can be
ensured. This results in a strong reduction of the con-
ceptual complexity of aspect combination. This idea has
been incorporated into JMangler, a framework for load-
time transformation of Java classes that can be used as a
“back end” for arbitrary AOP systems.

1 Motivation

1.1 Unanticipated Adaptations

Software requirements are in a constant flux. Some
changes in requirements can be anticipated by software
developers, so that the necessary adaptations can be pre-
pared for, for example by suitable parameterization or
by application of dedicated design patterns. Within the
scope of these anticipated options for adaptation, soft-
ware can be used already in a flexible way, albeit in re-
stricted limits and with a corresponding increase in de-
velopment effort.

However, unanticipated changes of requirements oc-
cur repeatedly in practice, and the above suggested tech-
niques cannot tackle them by definition. Furthermore,
the manual integration of hooks for any conceivable
eventuality is not a feasible option, since this dramati-
cally decreases reliability, efficiency and maintainability.

Alternatively, programming languages and runtime
systems should be equipped with features that allow for
far reaching manipulations of program internals without
destructively modifying its source code. This leads to an
increase of options for unanticipated adaptation as well
as a decrease of effort to prepare for anticipated adapta-
tions. Therefore the structure of programs can be kept
much simpler from the outset and they can be focussed
on solving their primary tasks.

In order to provide for this significant simplifica-
tion of software development, the goal of the TAILOR
Project at the Institute of Computer Science III of the
University of Bonn [10] is to conceive and implement
enhancements of programming languages and runtime
systems to allow for unanticipated adaptability of soft-
ware. In doing so, special attention is payed to the issues
of component-oriented software, among others.

1.2 Focus on Component-Oriented Soft-
ware

The following definition for software components is
quoted in [9]:

A software component is a unit of compo-
sition with contractually specified interfaces
and explicit context dependencies only. A
software component can be deployed indepen-
dently and is subject to composition by third
parties.

This definition pushes the limits even further, both on
the level of the components that are the targets of adap-
tation as well as on the level of the adaptations that are
applied to the components.

• Componentsare usually deployed using a compiled
format, and their source code is not available for
modifications. Even if the source code can be ac-
cessed in some cases, direct modifications are still
not feasible, since they would lapse in the pres-
ence of new versions of a component. However,
it is still highly desirable to be able to use compo-
nents in unanticipated contexts and with unantici-
pated adaptations.

• Adaptationsshould be expressible in a form that
takes the shape of components, too. Here, the aim
is to provide a mechanism that allows one to inde-
pendently deploy dedicated adaptations and make
them composable by third parties.

1

1.3 Challenges

A viable alternative to direct modifications of source
code is the declaration of incremental program transfor-
mations that can be carried out automatically. In this
context, there are two approaches which we regard as
particularly important:

• Aspect-Oriented Programming (AOP) [1] en-
ables one to group semantically related transfor-
mations into so-calledaspects. These aspects are
orthogonal to the traditional modularisation into
classes and inheritance hierarchies.

• Loadtime Component Adaptation The seminal
work on BCA [7] has shown that it is best to apply
unanticipated adaptations when a program is being
loaded, just before execution. In this way, classes
can be transformed that are determined to be part of
an application as late as runtime.

In the following sections we discuss weaknesses of
existing AOP technology with regard to independent ex-
tensibility, a key feature of component-oriented software
[9], and suggest a partial solution. We present a frame-
work for loadtime transformations of Java programs that
implements this solution. This framework can be used
as a “back end” for arbitrary AOP systems.

2 Problems of Unanticipated As-
pect Composition

So far, there is no satisfactory means to safely com-
bine aspects that have been developed independently.
In the general case, when such aspects have not been
spefically designed for joint use and do not have inti-
mate knowledge of their respective implementation de-
tails, unwanted side effects are likely to occur. Explicit
composition of aspects without unwanted side effects is
possible only if the joint use of these aspects has been
anticipated. The challenge is to find an automatically ap-
plicable way of combining aspects without knowledge of
their intimate details that still avoids unwanted side ef-
fects.

This problem can be divided into two parts that are
discussed in the following subsections. In order not to tie
this discussion to a particular AOP technique, we use the
general termprogram transformation. To be more spe-
cific, we deal withpositively triggered program trans-
formations, which can be initiated only by the existence
of a particular property of a program, but not by the ab-
sence of such a property. All AOP systems known to the
authors are restricted to this kind of transformations.

2.1 Mutual Triggers

The first problem of unanticipated composition of as-
pects is the possible occurence of mutual triggers. A

late transformation possibly adds properties to a pro-
gram that requires the reapplication of transformations
that have been executed already.

Mutual triggers cannot be dealt with in current AOP
systems, since each transformation can be applied only
once. This may result in potentially incomplete pro-
grams whose missing parts could be supplied only by
reapplication of “old” transformations.

It seems that transformations should be iterated until
a program is not changed anymore, that is until a fixed
point is reached. In some cases this may be required even
when a single transformation is to be employed, but the
target program has a cyclic structure with regard to the
properties that trigger the transformation’s application.
An example is given in section 5.

However, the need to iterate transformations immedi-
ately gives rise to the following questions.

• Does the iteration terminate?

• Is the result unambiguous?

2.2 Order of Transformations

Unfortunately, the answer to both questions is negative
in the general case. The following example illustrates
the different outcomes of the same transformations, de-
pending on the order of their application.

Suppose that the following program is to be trans-
formed by two aspectsAccess andCounter.

public class C {
public B b = new B();

public void manipulateB() {
b.doSomething();

}
}

The purpose ofAccess is to extend a class by access
methods for each of its public fields, and to replace all
direct accesses to these fields by calls to these generated
methods. The purpose ofCounter is to amend each field
of a class by a counter that is incremented on each read
access to its associated field.

As described above, these two aspects are applied al-
ternately until classC is not changed anymore. Depend-
ing on which aspect comes first, this process leads to
different outcomes, as shown in figure 1. The differ-
ence manifests itself in methodmanipulateB(). Its im-
plementation in classC’ increments the counter of field
b, whereas this is not the case in classC”. This difference
is caused by the fact that in the second case,Access re-
places the direct access tob by a call to the respective
access methodbeforeCounter has a chance to recognize
it. As a result,b counter in C’ is increased twice as often
as inC”.

2

public class C’ {
public B b = new B();

(1) private int b counter = 0;

(2) public void setB(B b) {
this.b = b;

}
(2) public B getB() {
(3) b counter++;

return this.b;
}

public void manipulateB() {
(1) b counter++ ;
(2) getB().doSomething();

}
}

public class C’’ {
public B b = new B();

(2) private int b counter = 0;

(1) public void setB(B b) {
this.b = b;

}
(1) public B getB() {
(2) b counter++;

return this.b;
}

public void manipulateB() {

(1) getB().doSomething();
}

}

(1) Counter, (2) Access, (3) Counter, ... (1) Access, (2) Counter, ...

Figure 1: Aspects may have differing results, depending on the order of their application.

3 Partitioning of Transformations

Besides illustrating this negative result, this example is
apt for another important observation. Whereas the re-
sultingmethod bodyof manipulateB is dependent on the
order of transformations, theinterfacesof C’ andC” are
exactly the same, independent of this order.

In fact, it can be shown that the result of transforma-
tions of interfaces is always independent of the order of
transformations. This is due to the fact that interfaces
areunordered setsof names and signatures, whereas im-
plementations areordered listsof statements and expres-
sions. It is obvious that the order in which elements are
added to a set does not affect the resulting set, whereas
the order in which a list is manipulated is essential for
the result.

For this reason, program transformations should be
partitioned into two classes, namely

• code transformations, and

• interface transformations.

Code transformationsmodify existing method bod-
ies, interface transformationsare responsible for every-
thing else, for example adding classes, inheritance rela-
tions, fields and methods.

Contrary to fields, which are assigned default values
by Java when no field initializer is given, methods cannot
be given any meaningful “default behavior” in the gen-
eral case. Therefore, when adding non-abstract meth-
ods during interface transformations, they must be sup-
plied with initial code which can be transformed further
by code transformations. Therefore, the addition of a
method including an initial method body is still regarded
as a pure interface transformation.

Likewise, changes to modifiers are regarded as pure
interface transformations. However, it is ensured that
accessibility (public, protected, etc.) of members is
widened only.

Generally speaking, onlymonotoneinterface trans-
formations are considered valid – they are allowed to add
new members only, or widen the accessibility of existing
members, but they must not remove or change members,
or narrow their accessibility. Modifications may be ex-
pressed as code transformations only.

With regard to our original problem statement these
considerations can be summed up as follows:

• Aspects that are restricted to interface transforma-
tions can be developed independently and com-
bined automatically.

• For the time being, aspects that include code trans-
formations cannot be automatically combined.

Based on these observations, a tool for loadtime trans-
formations has been developed in the course of the TAI-
LOR project. We present this tool in the following sec-
tion.

4 JMangler

JMangler is a framework that is implemented in Java and
that allows transformations to be applied to Java classes
during loadtime, just before these classes are linked by
the Java Virtual Machine. Programmers can write their
own transformer components1 that analyze the classes

1These transformer components are equivalent to aspects in other
AOP systems.

3

��
��
��
��
�
�

Original Class Files�����
Class Loader

System

Execution
Engine

Transformer
Components

JManglerJMangler

Adapted Class Files

Figure 2: Architecture of the JMangler Framework

on target and decide which concrete transformation are
to be carried out.

JMangler does not offer a dedicated transformation
language, but instead requires analysis and transforma-
tions to be expressed in pure Java. For this reason, a
good knowledge of Java’s class file format is needed.
However, we plan to develop a compiler for a higher-
level aspect-oriented language (for example AspectJ)
that compiles aspects into JMangler’s transformer com-
ponents.

The transformation process is partitioned into two
phases. In the first phase, interface transformations are
repeatedly executed in an arbitrary order until they stop
to issue any further modification requests. In this phase,
the framework checks the validity of requested transfor-
mations (with regard to binary compatibility), chooses
the order in which transformations are to be applied, and
carries out the concrete transformations.

In the second phase, only code transformations are
executed. Each code transformation is executed exactly
once, and the order in which the code transformations are
applied must be defined by the composer of the trans-
former components. If repetition is needed, it must be
expressed explicitly by the composer.

In order to be used as an interface transformer, a trans-
former component must implement theInterfaceTrans-
formerComponent interface. Likewise, it must imple-
ment theCodeTransformerComponent interface in order
to be used as a code transformer. It is also allowed to im-
plement both interfaces in order to be used for both pur-
poses. This does not affect the order of the two phases
of transformation - a transformer component may play
the role of an interface transformer only during the first
phase and the role of a code transformer only during the
second phase. However, in this way a transformer com-
ponent is able to coordinate interface and code transfor-
mations on a detailed level.

JMangler’s architecture is illustrated in figure 2.
JMangler is configured by an XML file that includes in-
formation on the actual transformer components that are
to be applied, and on the order of code transformations.

5 Example of Use

During the course of the TAILOR project, JMangler has
been employed successfully for an implementation of
LAVA , an extension of the Java Programming Language.
In order to make the LAVA extensions effective for third
party Java class files, special transformer components
undertake the task of modifying their bytecode accord-
ingly.

The ability to automatically combine interface trans-
formers and apply them iteratively has proven to be an
essential feature in the implementation of LAVA . It ef-
fectively allows JMangler to be used as a back end of the
LAVA compiler. This is illustrated with the following,
strongly simplified example.

One of the steps that LAVA takes to implement object-
based inheritance is to automatically generate local for-
warding methods for each method in the declared type of
specially marked, so-calleddelegateefields. For exam-
ple in the following class, forwarding methods are gen-
erated for all methods that are included in class D’s inter-
face, since the declaration of fieldd includes the modifier
delegatee.

public class C {
public delegatee D d;

// if method m is included in D,
// delegatee (roughly) leads to
// generation of the following method

// public void m() { d.m(); }
}

A transformer componentForward is responsible for
determination of the methods in the delgatee field type
and the inclusion of appropriate forwarding methods in
the class that contains the delegatee field. However, this
process is complicated by the occurence of cyclic depen-
dencies, as shown in figure 3.

In this example there are forwarding relations from
D to C, from D to E, from E to D, and from E to F. If
each class could be modified only once, in the first step,
Forward would try to create forwarding methods for D.
However, this would not create all necessary methods,
since the methods that are “inherited” from F are miss-
ing in E. If Forward would first try to modify E, it essen-
tially would face the same dilemma. This problem can
be solved only by applyingForward repeatedly on each
of the involved classes.

JMangler is able to deal with this kind of transfor-
mations. SinceForward is a pure interface transforma-
tion, there are no unwanted side effects resulting from
interferences with transformer components that are re-
sponsible for other features of the LAVA language. For
this reason, all interface transformers can be used with-
out implicit interdependent knowledge.

4

C D E F
<<delegation>>

<<delegation>>

<<delegation>>

<<delegation>>

Figure 3: An example of a cyclic program structure that requires iteration of transformations.

6 Related Work

Some class libraries for class file representation and
modification are available that can be used as a base for
transformation tools, but they do not provide for sophis-
ticated transformation processes. Advanced issues that
are not dealt with by these libraries include the integra-
tion into the class loading and linking process, and a
minimal amount of coordination of multiple transform-
ers, at least.

JMangler uses theByte Code Engineering Library
(BCEL, former “JavaClass”) [4]. Other libraries avail-
able are theJikes Bytecode Toolkite(JikesBT) [5] and
the Bytecode Instrumenting Tool(BIT) [6], as well as
the API included in JOIE (see section 6.2).

6.1 Binary Component Adaptation

Binary Component Adaptation (BCA) [7] enables one
to define modifications that are applied to classes during
loadtime. For example, BCA enables new methods and
fields to be introduced into a class, or interfaces to be
extended by methods with standard implementations.

Whereas implementation of transformer components
for JMangler require a good knowledge of Java byte-
code, BCA allows one to express a predefined set of
modifications in a Java-like syntax, which is easier to
learn. They are compiled into so-calleddelta files, which
can be used as parameters for invocations of the JVM.

On the other hand, JMangler allows for more com-
plex modifications of class files and even allows dynamic
considerations and dependencies between classes to be
taken into account. BCA only allows for modifications
of single classes at once based on static considerations.

BCA has been integrated tightly into an implemen-
tation of the Java Virtual Machine (as of JDK 1.1) for
Sun Solaris. Therefore, it is more efficient than JMan-
gler which is implemented in pure Java. For the same
reason, BCA allows for modifications of system classes,
which is not possible when JMangler is used. On the
other hand, JMangler runs on top of all Java Virtual Ma-
chines that are compatible to JDK 1.3 and has been tested
on Windows, Solaris and Linux.

6.2 Java Object Instrumentation Environ-
ment

The Java Object Instrumentation Environment(JOIE)
[3] is another framework for loadtime transformations of
Java classes. Transformations are declared astransform-
ersthat can be registered with a specialized class loader.
This class loader creates object-based representations of
class files immediately after they are loaded by the class
loader. This representation is passed sequentially to each
registered transformer. Since JOIE is implemented in
pure Java it can be used with arbitrary implementations
of the JVM.

JOIE is similar to JMangler to some degree. In fact,
it has had a great influence on the design of JMangler.
Nevertheless, there are some fundamental differences.
Since JOIE employs a specially written class loader, it
cannot deal with classes loaded by different class load-
ers, so it cannot modify applications that are in need
of their own class loaders. JMangler is integrated on a
deeper level of Java’s core API, so it is able to modify
all class files regardless of the class loader that they are
being loaded by.

Furthermore, JOIE does not allow transformers to
take dependencies between classes into account, since
each transformer can be applied only to a single class
file at once. Another fundamental difference is JOIE’s
lack of an advanced composition mechanism for inde-
pendently developed transformers. Classes on target are
passed just once to each registered transformer, so the
problem of mutual triggers cannot be dealt with, con-
trary to what JMangler offers.

6.3 Javassist

Javassistis a class library for structural reflection in
Java. It allows for modifications during loadtime and
therefore can be compared to JMangler on a conceptual
level.

Javassist does not provide a model of dealing with
multiple transformers. Furthermore, only a strongly lim-
ited set of operations can be applied by Javassist. For
example, it is not possible to introduce completely new
defined methods into a class, but methods can just be
copied from one existing class to another.

5

The integration into the linking process is imple-
mented in a similar way like that of JOIE by providing a
specialized class loader that creates an object-based rep-
resentation of a class file. This results in the same limita-
tion that is also present in JOIE. If an application needs
to use its own class loader, its classes cannot be modified
by Javassist.

7 Conclusion

So far, there is no satisfactory means in AOP systems to
safely combine aspects that have been developed inde-
pendently. Interferences between independently devel-
oped aspects must be controlled by a mediating compo-
nent in order to avoid unwanted side effects. This fact
greatly reduces the applicability of AOP systems. Es-
pecially in the context of component-oriented program-
ming, where independent extensibility plays a central
role [9], aspects themselves are hardly usable as units
of composition in their current manifestations.

We have introduced the concept of partitioning trans-
formations into interface and code transformations. This
enables programmers to independently develop trans-
former components and have them automatically com-
bined. In order to do so, there is no need to explicitly
define the order of interface transformations. Only the
order of code transformations has to be specified explic-
itly, since it is essential for the behavior of the resulting
code.

Based on this concept, JMangler has been developed,
a tool for loadtime transformations of Java classes. More
detais on JMangler are given in [8].

Essentially we have shown that independent extensi-
bility in the sense of component-oriented programming
is feasible in the case of interface transformations. This
result can be transferred easily to other AOP systems.

The question remains if more detailed criteria can be
found for code transformations in order to achieve an
even higher degree of independent extensibility. On the
one hand it is conceivable that only a certain class of
code transformations, which do not violate independent
extensibility, is considered to be valid. Determination of
the border between valid and invalid code transforma-
tions is the main challenge in this case. It may be impor-
tant to take considerations into account that are drawn
from data flow analysis or program slicing techniques.

On the other hand it will be interesting to explore the
potential of attaching explicit specifications of compos-
ability properties to code transformer components. If
these properties were verfiable automatically, they could
be used as a basis for automatic composition.

The TAILOR project is supported by Deutsche
Forschungsgemeinschaft (DFG) under grant CR 65/13.

References

[1] Aspect-Oriented Programming Home Page.
http://www.parc.xerox.com/csl/projects/aop/

[2] Shigeru Chiba.Load-Time Structural Reflection in Java.
in: Elisa Bertino (Ed.). Proceedings of ECOOP2000
Springer LNCS 1850, 2000.

[3] Geoff A. Cohen, Jeffrey S. Chase, and David L. Kamin-
sky. Automatic program transformation with JOIE. in:
Proceedings of the USENIX 1998 Annual Technical Con-
ference, Berkeley, USA, 1998. USENIX Association.

[4] Markus Dahm. Byte Code Engineering Library.
http://bcel.sourceforge.net

[5] Chris Laffra. Jikes Bytecode Toolkit. http://
www.alphaworks.ibm.com/tech/jikesbt.

[6] Han Bok Lee and Benjamin G. Zorn.BIT: A tool for
instrumenting Java bytecodes. in: USENIX Symposium
on Internet Technologies and Systems Proceedings, Mon-
terey, California, December 8–11, 1997, Berkeley, CA,
USA, 1997. USENIX.

[7] Ralph Keller, Urs Ḧolzle. Binary Component Adapta-
tion. in: Eric Jul (Ed.). ECOOP ’98 – Object-Oriented
Programming. Conference Proceedings, Springer LNCS
1445, 1998.

[8] Günter Kniesel, Pascal Costanza, and Michael Auster-
mann. JMangler – A Framework for Load-Time Trans-
formation of Java Class Files. submitted for:IEEE Inter-
national Workshop on Source Code Analysis and Manipu-
lation (SCAM 2001).

[9] Clemens Szyperski. Component Software – Beyond
Object-Oriented Programming. Addison-Wesley, 1998.

[10] The Tailor Project. http://javalab.cs.uni-bonn.de/research
/tailor/

6

