
Introducing mixin layers to support
the development of context-aware systems

Brecht Desmet, Jorge Vallejos, and Pascal Costanza
Programming Technology Lab - Vrije Universiteit Brussel

Pleinlaan 2 - 1050 Brussels, Belgium
{bdesmet,jvallejo,pascal.costanza}@vub.ac.be

ABSTRACT
The domain of pervasive computation introduces new op-
portunities to make software systems aware of the context in
which they exist in order to respond more adequately to user
expectations. As important as it is to have appropriate ways
to obtain context information, it is to provide programmers
with clean language features to model the context influence
inside of software systems. This paper explores the mixin
layer language construct to implement context-dependent
adaptations separate from the application core logic. To-
gether with a mechanism that dynamically composes and
activates mixin layers, we argue that mixin layers possess a
great potential to support the development of context-aware
systems.

1. INTRODUCTION
Context-aware computing envisions scenarios in which sys-
tem behaviour is parameterized by context information such
as location, activity or battery level. As these context pa-
rameters change over time, context-aware systems should
adapt their behaviour accordingly. Although we currently
find an important amount of research on context-awareness,
most of the approaches focus on the way software systems
can perceive their surrounding context. We believe that
this is just half-way of the development of a context-aware
system. A new and totally different problem emerges when
programmers start using the context information to dynami-
cally adapt the behaviour of software systems. In this paper,
we claim that mainstream language constructs to implement
the contextual influence on program behaviour easily results
in unmanageable designs and code scattering.

We introduce a model in which context-aware systems are
described by means of adaptations. Depending on the con-
text in which a system appears, these adaptations can be dy-
namically applied to the application core logic of a system.
The main issue of this paper is a motivation why mixin layers
are a good candidate to implement these context-dependent
adaptations. We will clarify our approach with a concrete

implementation of a context-aware system.

This paper is organised as follows. Section 2 presents an
example of a context-aware scenario. The problems with
traditional language constructs to implement context-aware
scenarios are discussed in Section 3. Next, Section 4 explains
how mixin layers are related to context-aware systems. Sec-
tions 5 and 6 present a concrete implementation of the exam-
ple from Section 2. Additionally, Section 8 pinpoints where
our approach suffers from a computational overhead and
proposes a solution for that. Finally, the main ideas of this
paper are summarised in Section 10.

2. MOTIVATING EXAMPLE
We present the software of a simplified cellular phone as an
illustration of a context-aware system. The phone example
consists of the following functionalities. First, the phone
contains a list of contacts, some of them marked as VIPs.
This information is encapsulated in the contacts class. Sec-
ond, the messages class provides facilities to read and send
messages. Third, the journal class keeps track of all phone
traffic. Finally, the main task of the phone is to ring when-
ever somebody calls and to provide the means to answer
calls. This functionality is offered by the phonecalls class.
These different functionalities constitute the application core
logic of the cellular phone.

The behaviour of the application core logic can be adapted
at runtime according to context changes. We introduce three
context-dependent adaptations, each of which contain two
parts: a context condition that explains when the adaptation
is applicable and the actual behaviour of the adaptation with
regards to the application core logic.

IgnoreAdaptation If the battery level is low, ignore and
log all phone calls except for contacts that are classified
as VIPs.

AnswerMachineAdaptation If the time is between 11pm
and 8am, activate the answering machine for incoming
phone calls and the auto-reply service for messages.

RedirectAdaptation If the user is in the meeting room,
redirect all calls and messages to the secretary.

Although the three context conditions (battery low, time be-
tween 11pm-8am and meeting room location) can all be true



at the same time, the behaviour of the adaptations cannot
be freely combined. This is because adaptations might con-
tradict each other, like e.g. IgnoreAdaptation and Redirect-
Adaptation. In case of a contradiction, the user can make
an arbitrary decision about what should happen. For in-
stance, in our phone example, the following set of policy
rules describes the valid combinations of adaptations and
how contradictions should be resolved.

PolicyRule I All adaptations can exist individually.

PolicyRule II IgnoreAdaptation and AnswerMachineAdap-
tation can coexist. Only VIP contacts will get in touch
with the answering machine, all other contacts will be
ignored. All messages receive auto-reply.

PolicyRule III IgnoreAdaptation and RedirectAdaptation
cannot coexist. RedirectAdaptation has priority.

PolicyRule IV AnswerMachineAdaptation and Redirect-
Adaptation cannot coexist. AnswerMachineAdapta-
tion has priority.

3. PROBLEM STATEMENT
Traditional language constructs to implement scenarios like
the cellular phone example include both design patterns (e.g.
strategy or decorator pattern) and conditional tests (e.g. if
or case). We discuss both approaches and explain how their
usage might lead to cumbersome designs.

The strategy design pattern could be a good candidate to
implement the cellular phone example. In this case, we re-
gard each possible adaptation as another strategy that deals
with incoming communication. This approach does not scale
since context-aware systems typically involve multiple con-
text parameters like BatteryLevel = {low, high} or Location
= {meetingroom, elsewhere}. In the worst case, a combina-
torial explosion of possible behavioural variants might arise.
The strategy design pattern constructs a new object for each
possible behavioural variant. This approach becomes un-
manageable if the number of context parameters increases.

Alternatively, one could implement the adaptations using
the decorator design pattern (aka wrapper). Here, we re-
gard the adaptations as decorators that refine the behaviour
of individual objects through delegation. Since context-
dependent adaptations might affect multiple classes, the de-
veloper is burdened with the implementation of non-functional
behaviour that manages multiple decorators simultaneously.
For example, the activation or deactivation of multiple deco-
rators that constitute a context-dependent adaptation should
be an atomic operation to ensure consistent program be-
haviour. Hence, the decorator design pattern is in such
cases inevitably complemented with additional “bookkeep-
ing code” which troubles the system design. This is be-
cause the decorator design pattern is actually not expressive
enough to adequately implement context-dependent adapta-
tions.

The use of conditional statements also provide no solace
since the implementation of context-dependent adaptations
easily leads to code scattering. Furthermore, the context in-
formation of a system, which is actually application-specific

domain knowledge, is also scattered around within the test-
clauses of the conditional statements. This makes it ex-
tremely difficult to extend context-aware systems. Con-
sider for example the case in which an additional context-
dependent adaptation is introduced in a context-aware sys-
tem. Such an extension requires full understanding of all
context information used throughout the system and might
affect multiple modularisation units. Therefore, this ap-
proach is not feasible for large-scale context-aware systems.

In summary, we agree that design patterns and conditional
tests are a plausible solution to implement context-aware
systems. However, these traditional constructs lack expres-
siveness and hence induce cumbersome designs. We there-
fore believe that more dedicated language constructs can
alleviate the design of context-aware systems substantially.

4. CONTEXT-DEPENDENT ADAPTATIONS
AS MIXIN LAYERS

The claim of this paper is that the modularisation capa-
bilities of mixin layers offer important contributions to the
development of context-aware systems. The basic idea is
to separate the context-dependent adaptations from the ap-
plication core logic and modularise them using mixin lay-
ers. However, current practices with mixin layers are not
aligned with our specific dynamic requirements in the do-
main of context-aware computing. Before we explain these
dynamic requirements in Section 4.2, we first explain briefly
what mixin layers are about in the next section.

4.1 Mixin layers
The notion of mixin layers [8] was introduced by Smarag-
dakis et al. as an implementation technique to support re-
finement of collaboration-based designs. A mixin layer is a
modularisation unit that encapsulates different mixin classes
each refining a single class of the collaboration. Such mixin
classes (or just mixins) are also commonly known as abstract
subclasses. The distinguishing feature between ordinary and
abstract subclasses is that the latter have parameterized su-
perclasses. This property enables the instantiation of mixins
with various superclasses and thus supports reusability.

In practice, refinement by using mixin layers is achieved
through the ability to add or specialize methods and classes.
Moreover, mixin layers can also refine other mixin layers
because they can be composed in an inheritance hierarchy,
yielding a layered design. Furthermore, since mixin layers
can affect multiple classes, they support cross-cutting mod-
ularisation to a certain degree. These properties are illus-
trated in Figure 1.

4.2 Dynamic requirements
Mixin layers hold some promise to implement the context-
dependent adaptations because they adapt behaviour through
inheritance, support cross-cutting modularisation and can
be composed in an inheritance hierarchy. Unfortunately,
current practices with mixin layers are not aligned with the
specific characteristics of context-aware systems. This sec-
tion focusses on two important issues. First, since the con-
text information of a system is not known beforehand (e.g.
location of user), we require a mechanism that selects and
composes mixin layers at runtime based on the actual con-



MixinLayer2

Class1 Class2 Class3 Class4

Mixin2b Mixin2d

Mixin1b

ap
pl

ica
tio

n
co

re
 lo

gi
c

}

Mixin1a

re
fin

em
en

t

}

re
fin

em
en

t

}Class

MixinLayer1

cross-cutting

hi
er

ar
ch

ica
l

usesuses

Figure 1: Mixin layers.

text information. Second, we additionally require a mecha-
nism that dynamically activates and deactivates mixin layers
accordingly during program execution.

Mixin layer selection and composition Our notion of
this issue contrasts currentday practices with mixin
layers at two levels. First, both the selection and
composition of mixin layers are computed automati-
cally based on context information. In current mixin
layer implementations, this selection and composition
is done manually at design time. Second, the compo-
sition of mixin layers evolves over time as the context
changes. At present, compositions of mixin layers are
not supposed to change at runtime and are therefore
fixed at design time. Hence, we conclude that there
exists a huge gap between existing practices where the
composition of mixin layers does not change at run-
time and the kind of dynamic composition mechanism
that we require to reconfigure compositions at runtime
according to context changes.

Dynamic layer activation Context-aware adaptations are
accomplished by activating and deactivating mixin lay-
ers at runtime according to context changes. This
pluggability can be achieved by redefining classes at
runtime. Existing instances of redefined classes should
be updated accordingly. On the one hand, this might
look like a harsh requirement to implement in a static
language like Java. On the other hand, by using the
reflective capabilities of dynamic languages such as
CLOS or Smalltalk, it is much more straightforward
to perform class redefinitions at runtime.

The following section presents a concrete implementation
of the cellular phone example from Section 2. This imple-
mentation is continued in Sections 6 and 7 that respectively
discuss the mixin layer selection and composition issue and
dynamic layer activation.

5. EXAMPLE IMPLEMENTATION
In an attempt to implement the cellular phone example us-
ing mixin layers, we encountered many programming lan-

guages that provide different flavours of mixin layers like
CaesarJ [3], Classboxes in Smalltalk [4] and LasagneJ [9].
We chose to exploit ContextL [5] which is written in Com-
mon Lisp [2]. This implementation introduces the notion of
so-called layers as an extension of the Common Lisp Object
System. Our choice for this implementation is driven by the
fact that ContextL supports a flexible and efficient mecha-
nism for activating and deactivating its layers [6]. The im-
portance of this issue is discussed in Section 7. The remain-
der of this section explains how the context-dependent adap-
tations of the cellular phone example can be implemented
in ContextL.

5.1 Application core logic
We first take a closer look at the application core logic of the
cellular phone. Only the classes phonecalls and messages

are subject to refinement. We therefore define them as lay-
ered classes.

(define-layered-class phonecalls () ...)
(define-layered-class mesages () ...)

Layered classes provide the opportunity to define layered
methods. Such methods can be refined with layers later on.
In this example, the most important layered methods are
accept-call and receive-message which are respectively
part of the layered classes phonecalls and messages. We
omit the actual implementation of the layered methods be-
cause this is not relevant here.

(define-layered-method accept-call
((p phonecalls) nr)
...)

(define-layered-method receive-message
((m messages) nr text)
...)

We additionally provide the class cellphone that acts as a
facade for the classes of the application core logic. All in-
coming communication passes through the generic function
in. This can be either a phonecall (represented by the struc-
ture phonecall), or a message (represented by the structure
message). These structures contain information like caller-
id, date, time, etc.

(defmethod in ((c cellphone) (p phonecall))
(accept-call (get-phonecalls c) (phonecall-nr p)))

(defmethod in ((c cellphone) (m message))
(receive-message (get-messages c) (message-nr m)

(message-text m)))

5.2 Layer definitions
We now define the ignore-layer, answermachine-layer

and redirect-layer in ContextL for the IgnoreAdaptation,
AnswerMachineAdaptation and RedirectAdaptation respec-
tively.

(deflayer ignore-layer)
(deflayer answermachine-layer)
(deflayer redirect-layer)



The behavioural part of the IgnoreAdaptation ignores and
logs phone calls from callers that are not classified as VIP.
We implement this behaviour with a layered method that
is part of ignore-layer. The latter is specified with the
:in-layer keyword. The predicate vip-p checks whether
the phone number nr is classified as a VIP contact. All
ignored calls are logged in the journal with the method
add-log.

(define-layered-method accept-call
:in-layer ignore-layer ((p phonecalls) nr)
(if (vip-p (get-contacts p) nr)

(call-next-method)
(add-log (get-journal p) ’ignored nr)))

The activation of ignore-layer yields the design presented
in Figure 2.

phonecalls messages

accept-call

ignore-layer

Figure 2: System design if battery level is low.

The AnswermachineAdaptation is cross-cutting since it af-
fects the layered classes phonecalls and messages. The
method get-voice-message records and returns the voice
message of the caller. The method send-message is used to
implement the auto-reply of incoming messages.

(define-layered-method accept-call
:in-layer answermachine-layer ((p phonecalls) nr)
(let ((msg (get-voice-message)))

(add-log (get-journal p) ’auto nr msg)))

(define-layered-method receive-message
:in-layer answermachine-layer

((m messages) nr text)
(send-message m nr "I will reply asap.")
(call-next-method))

Figure 3 illustrates how layers can be combined in an in-
heritance hierarchy. This example is an application of Poli-
cyRule II that allows the combination of ignore-layer and
answermachine-layer. Such composition yields the follow-
ing behaviour: only callers that are classified as VIP get in
touch with the answering machine. All other calls are ig-
nored and logged in the journal. Messages always receive an
auto-reply.

Finally, the implementation of the RedirectAdaptation is as
follows. The method redirect-call forwards the incoming
calls to the secretary *secr*.

(define-layered-method accept-call
:in-layer redirect-layer ((p phonecalls) nr)
(redirect-call p nr *secr*))

phonecalls messages

accept-call receive-
message

answermachine-layer

accept-call

ignore-layer

Figure 3: System design if battery level is low and
time is midnight.

6. LAYER SELECTION AND COMPOSITION
The context information of context-aware systems is not
known beforehand and might change over time (e.g. location
of user). We therefore require a mechanism that selects and
defines layer compositions automatically at run-time based
on actual context information. This task is accomplished by
means of a forward chainer. The production rules of such
a reasoning system describe when layers are applicable and
how they can be composed. We identify three categories of
rules which are discussed in Sections 6.1, 6.2 and 6.3 respec-
tively.

TransformationRules transform primitive sensor data into
meaningful application-specific context information.

SelectionRules associate the conditional part with the be-
havioural part (i.e. layers) of an adaptation.

CompositionRules generates valid compositions of layers
based on the user-defined policy rules. For example,
the cellular phone scenario of Section 2 has four pol-
icy rules that precisely describe what should happen if
multiple layers coexist.

We employ an efficient forward chainer called LISA [12] to
perform the reasoning job.

6.1 Deducing high-level context information
The following TransformationRules deduce meaningful con-
text information for the application (e.g. (battery (level

low))) out of low-level sensor information (e.g. (battery

(percentage 15))). LISA provides the facilities to group
relevant rules in so-called rule-contexts. For example, the
following rules are all part of the rule-context "in" which
stands for incoming communication. The body of a LISA-
rule consists of a condition and an action part which are
situated before and after the => symbol respectively. Vari-
ables are indicated with a leading question mark.



(defrule battery-low (:context "in")
(?inst (battery (percentage ?x (< ?x 20))

(level (not low))))
=>
(modify ?inst (level low)))

(defrule time-night (:context "in")
(?inst (time-of-day (hour ?x (or (>= ?x 23)

(< ?x 8)))
(period (not night))))

=>
(modify ?inst (period night)))

(defrule location-meeting (:context "in")
(?inst (location (longitude 5) (latitude 13)

(place (not meeting))))
=>
(modify ?inst (place meeting)))

This is only a light-weight approach in comparison with con-
temporary context modelling and reasoning tools like [10]
and [11]. Since our major concern is language design for
context-aware systems, we intentionally do not devote spe-
cial attention to the modelling issue.

6.2 Layer selection
We are now able to decide which mixin layers should be
activated according to the current (high-level) context in-
formation. This is done by the SelectionRules which are
also grouped in the rule-context "in". They represent the
adhesive means between the context conditions on the one
hand and the context-dependent behaviours (i.e. layers) on
the other hand.

(defrule ignore-adaptation (:context "in")
(battery (level low))
=>
(assert (layer (name ignore-layer))))

(defrule answermachine-layer (:context "in")
(time-of-day (period night))
=>
(assert (layer (name answermachine-layer))))

(defrule redirect-layer (:context "in")
(location (place meeting))
=>
(assert (layer (name redirect-layer))))

6.3 Composing adaptations
The final step consists of composing the selected layers of the
previous step in a linear inheritance hierarchy. We therefore
added a before slot to each layer fact in LISA. In this way,
we can unambiguously define the order between the layers
using CompositionRules which implement the policy rules of
the cellular phone example. For instance, the following LISA
rule compose-2 implements PolicyRule II. It says that, if
both ignore-layer and answermachine-layer are selected,
answermachine-layer should appear before ignore-layer.

(defrule compose-2 (:context "in")
(layer (name answermachine-layer))
(?y (layer (name ignore-layer)

(before (not answermachine-layer))))
=>
(modify ?y (before answermachine-layer)))

PolicyRule IV gives priority to answermachine-layer if both
redirect-layer and answermachine-layer coexist. This is
implemented as follows.

(defrule compose-4 (:context "in")
(?x (layer (name redirect-layer)))
(layer (name answermachine-layer))
=>
(retract ?x))

7. DYNAMIC LAYER ACTIVATION
Once the appropriate layer selection and composition is de-
termined by the reasoning system, we need to activate these
layers dynamically. ContextL supports an efficient mecha-
nism to activate layers at runtime within a dynamic scope.
Unfortunately, the current implementation requires that the
layer composition is specified manually at design time. We
therefore extend ContextL with a construct that computes
the layer composition automatically using the LISA rules
from Section 6. For example, a context-aware incoming
phone call looks as follows.

(with-current-context ("in")

(in *cellphone* *phonecall*))

The with-current-context macro carries out the following
steps. First, low-level sensor information is added to the
facts database of LISA. Next, the forward chainer evaluates
all rules of the rule-context "in". The parameter list of
with-current-context might contain an arbitrary number
of rule-contexts. The result of the reasoning process is a
list of layers that describes the linear inheritance hierarchy.
Finally, these layers are applied to all objects of the current
thread within the dynamic scope of with-current-context.
This approach ensures that all method calls within the bound-
ary of the dynamic scope will be subject to the active layers
and all other method calls remain unaffected. We therefore
consider dynamic scoping in this case as a powerful means
to ensure consistent program behaviour.

8. LAZY LAYER ACTIVATION
The current implementation of with-current-context suf-
fers from a substantial overhead in cases where some layers
are activated that are not relevant within the dynamic scope
of with-current-context. We illustrate the problem with
a simple example.

8.1 Extended cellular phone example
We extend the functionality of the cellular phone from Sec-
tion 2 to support multiple connection types for outgoing
communication: wifi, bluetooth, and default mobile connec-
tion. The connection types bluetooth and wifi are context-
dependent adaptations because they are only applicable if
there is a wifi and/or bluetooth connection in the surround-
ing environment. If the user is trying to make a phone call
while there is a wifi connection available, the system will
first try to perform the phone call via VoIP. If this fails (e.g.
the receiver is not online), the system will use the mobile
connection instead. The cellular phone also supports mes-
sage sending. In this case, the system will try bluetooth
and/or wifi connection to send messages before using the



mobile connection. The main difference between the out-
going phone call and message is that outgoing phone calls
only check for wifi connection, whereas outgoing messages
check for bluetooth and/or wifi connection. This policy is
followed because the bluetooth connection type is not suited
for phone traffic.

The application core logic of the cellular phone always em-
ploys the default mobile connection for making phone calls
or sending messages. In addition, we define two mixin lay-
ers bluetooth-layer and wifi-layer that implement the
context-dependent behaviour of bluetooth and wifi connec-
tion type respectively. These layers are only applicable if
their signal level is higher than 20 percent. The user policy
states that if both bluetooth and wifi connection type are
available, wifi connection type is tried first. All this is shown
in the following Selection- and CompositionRules.

(defrule bluetooth (:context "out")

(bluetooth (signal ?x (> ?x 20)))

=>

(assert (layer (name bluetooth-layer))))

(defrule wifi (:context "out")

(wifi (signal ?x (> ?x 20)))

=>

(assert (layer (name wifi-layer))))

(defrule compose (:context "out")

(layer (name bluetooth-layer))

(?x (layer (name wifi-layer)))

=>

(modify ?y (before bluetooth-layer)))

The following functions perform-call and send-message,
which are respectively part of the layered classes phonecalls
and messages, deal with the outgoing communication of the
cellular phone. (This example does not deal with the actual
implementation of performing phone calls or sending mes-
sages. Instead, we just print some informative sentences on
the screen.)

1 (define-layered-method perform-call

2 ((p phonecalls) nr)

3 (print "phone call via mobile network"))

4

5 (define-layered-method send-message

6 ((m messages) nr text)

7 (print "message via mobile network"))

Next, we implement the wifi-layer. This layer attempts
to employ the available wifi network to make phone calls or
sending messages. We assume the existence of the method
contact-available-p that checks whether the receiver is
available via wifi connection type.

8 (deflayer wifi-layer ()

9 ((connection :accessor wifi-connection)))

10

11 (define-layered-method perform-call

12 :in-layer wifi-layer ((p phonecalls) nr)

13 (if (contact-available-p

14 (wifi-connection

15 (find-layer ’wifi-layer)) nr)

16 (print "performing phone call via wifi")

17 (call-next-method)))

18

19 (define-layered-method send-message

20 :in-layer wifi-layer ((m messages) nr text)

21 (if (contact-available-p

22 (wifi-connection

23 (find-layer ’wifi-layer)) nr)

24 (print "sending message via wifi")

25 (call-next-method)))

The bluetooth-layer looks very similar, but is limited to
messages.

26 (deflayer bluetooth-layer ()

27 ((connection :accessor bluetooth-connection)))

28

29 (define-layered-method send-message

30 :in-layer bluetooth-layer ((m messages) nr text)

31 (if (contact-available-p

32 (bluetooth-connection

33 (find-layer ’bluetooth-layer)) nr)

34 (print "sending message via bluetooth")

35 (call-next-method)))

Similar to the generic function in that deals with all incom-
ing communication, we implement out that deals with all
outgoing communication (phonecall or message).

36 (defmethod out ((c cellphone) (p phonecall))

37 (perform-call (get-phonecalls c)

38 (phonecall-nr p)))

39

40 (defmethod out ((c cellphone) (m message))

41 (send-message (get-messages c) (message-nr m)

42 (message-text m)))

Finally, the code for making phone calls or sending messages
looks as follows. The variable *phone* is an instance of the
class cellphone which represents the cellular phone system.
The variable *x* can be an object of type phonecall or
message. The generic function out takes care of the type
dispatching.

43 (with-current-context ("out")

44 (out *phone* *x*))

8.2 Efficiency issue
The system always needs to check and possibly activate the
bluetooth-layer or wifi-layer. Although, if *x* is of type



phonecall, the bluetooth-layer is not of interest. Hence,
this approach suffers from a potential overhead. One might
suggest to overcome this problem by placing the layer ac-
tivations in the respective method specializers and putting
the wifi and bluetooth production rules in different rule-
contexts. The following modified code shows what this al-
ternative approach looks like.

45 (defrule bluetooth (:context "bluetooth-out") ...)

46 (defrule wifi (:context "wifi-out") ...)

47

48 (defmethod out ((c cellphone) (p phonecall))

49 (with-current-context ("wifi-out")

50 ...))

51

52 (defmethod out ((c cellphone) (m message))

53 (with-current-context ("bluetooth-out" "wifi-out")

54 ...))

55

56 (out *phone* *x*)

This approach is not desirable because of the following two
reasons. First, the programmer is responsible for doing some
abstract interpretation about the source code in order to de-
cide where and which rule-contexts should be activated to
avoid overhead. Depending on the complexity and the size
of the context-aware system, this job can become unmanage-
able. Second, from a language engineering perspective, it is
not advised to pollute code with scattered layer activations
(line 49 and 53) for avoiding overhead only. The pollution
makes the code difficult to comprehend and extend because
there are implicit relationships between the scattered layer
activations. These implicit relationships become visible in
cases where we, for example, want to deactivate the context-
awareness of the outgoing communication.

8.3 Delaying layer activation
The essence of the previous problem is that the selection,
composition and activation of layers is accomplished before
the body of with-current-context is executed. This can be
solved by delaying the layer activations until it is required.
We call this approach lazy layer activation inspired by the
notion of lazy evaluation.

We explain the semantics of this approach using the ex-
tended cellular phone example from Section 8.1. Consider
for example that the variable *x* is of type message in
line 44. The layer selection, composition and activation is
delayed until the layered method send-message is called
in line 41. This method can be adapted with both the
wifi-layer (lines 19-25) and bluetooth-layer (lines 29-
35). We employ the LISA rules to determine whether these
mixin layers should be activated according to the current
context information. Let us assume that there is only a
bluetooth connection available in the surrounding environ-
ment. From now on, the bluetooth-layer remains active
for all subsequent method calls within the dynamic scope of
with-current-context (line 43).

The delayed layer selection requires a backward chainer to
avoid computational overhead of the reasoning system. For

example, when the control flow reaches the layered method
send-message in line 41, there are only two candidate layers
bluetooth-layer and wifi-layer. A backward chainer de-
termines the applicability of these candidate layers by try-
ing to satisfy their context conditions. The way how the
layer composition is computed remains unchanged, a for-
ward chainer is still the ideal candidate for this task.

9. RELATED WORK
This section discusses two approaches that deal with dy-
namic adaptation of system behaviour and briefly explains
the differences with our approach.

Amano et al. propose the LEAD++ description language [1]
to support dynamic adaptability of software systems driven
by changing runtime environments (i.e. context informa-
tion). To this end, LEAD++ introduces the mechanism of
so-called adaptable procedures and adaptable methods which
are very similar to generic functions and methods in the
Common Lisp Object System (CLOS). The main difference
between both is that adaptable procedures have a more fine-
grained method dispatch. LEAD++ contrasts our approach
in the following ways. First, adaptable procedures have no
explicit support to deal with cross-cutting modularisation.
Next, the dispatch conditions are written in an operational
style and reside in the adaptable method definitions. The
latter design choice makes it hard to make collaborative de-
cisions among multiple adaptable procedures. On the con-
trary, we distinctly separate the conditional (i.e. declarative
rules) and behavioural (i.e. mixin layers) part of adapta-
tions in order to support reusability, extensibility, and co-
operation. Finally, the behavioural variations in LEAD++
are realised by means of reflection whereas we employ mixin
composition.

The Chisel dynamic adaptation framework [7] of Keeney
et al. addresses the problem of unanticipated policy-driven,
context-aware dynamic adaptation of software systems. The
authors promote the use of a meta-object protocol (MOP)
to accomplish unanticipated dynamic adaptations. More
concretely, they developed a so-called meta-level adaptation
manager that performs run-time switches between metatypes
of (base level) service objects in response to events. The de-
cisions of this adaptation manager are guided by the Chisel
policy language. The latter associates metatypes of service
objects with run-time events (i.e. relevant context changes)
using logical rules. This approach suffers from the following
issues. First, the computational cost of continuously polling,
reasoning and switching between metatypes at run-time is
unclear. Consider the case in which Chisel continuously
switches the metatype of a seldom used network protocol
service object. In our approach, we limit the context ac-
quisition and reasoning to well-specified places in the source
code. Second, the policy language has no disciplined way
to control the scope of the adaptations. For example, with
regards to our cellular phone illustration, once the decision
has been made of how to respond to a phone call, the sys-
tem should be loyal to that decision until the phone call
finishes. Such functionality cannot be implemented in the
Chisel framework without workarounds like e.g. manually
adding locks. In contrast, we confine adaptations to dy-
namic scopes in the program execution. Finally, there is no
explicit support to express relationships between metatypes



like e.g. coexistence or mutual exclusion.

10. POSITION STATEMENT
This paper envisions context-aware scenarios in terms of
context-dependent adaptations that can be applied to the
application core logic of a system. Since traditional imple-
mentation techniques like design patterns and conditional
statements easily lead to cumbersome designs, we advocate
that context-aware systems require more dedicated language
constructs. To this end, we introduce mixin layers as a suit-
able candidate to implement context-dependent adaptations
while keeping the overall design lucid.

We have several reasons to believe that mixin layers provide
better means in comparison with traditional approaches to
develop context-aware systems. First, mixin layers go be-
yond the modularisation capabilities of design patterns since
they support cross-cutting modularisation to a certain de-
gree. Second, mixin layers are singletons and their applica-
tion to objects do not require object instantiation. Third,
mixin layers are not confined to a static inheritance hierar-
chy because the mixins have no fixed superclasses. All these
characteristics enable the developer to focus on the imple-
mentation of the application logic without suffering from
integrating “bookkeeping code” in the design to deal with
context-aware issues.

Another important property of our approach is that context
information is explicitly available in the system as declara-
tive rules. In this way, the mixin layer selection and compo-
sition can be computed efficiently using a reasoning system.
Moreover, the centralised context information considerably
supports program comprehension and extensibility. In addi-
tion, we propose a more advanced layer selection and compo-
sition mechanism, called lazy layer activation, that reduces
computational overhead of the reasoning system.

11. REFERENCES
[1] N. Amano and T. Watanabe. Lead++: An

object-oriented reflective language for dynamically
adaptable software model. IEICE Trans.
Fundamentals, E82-A(6):1009–1016, 1999.

[2] American National Standards Institute and
Information Technology Industry Council. American
National Standard for information technology:
programming language — Common LISP: ANSI
X3.226-1994. 1996.

[3] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
Overview of caesarj. Transactions on AOSD I, LNCS,
3880:135 – 173, 2006.

[4] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A
minimal module model supporting local rebinding. In
Proceedings of the Joint Modular Languages
Conference, volume 2789, pages 122–131.
Springer-Verlag, 2003.

[5] P. Costanza and R. Hirschfeld. Language constructs
for context-oriented programming - an overview of
contextl. Dynamic Languages Symposium, co-located
with OOPSLA, 2005.

[6] P. Costanza, R. Hirschfeld, and W. D. Meuter.
Efficient layer activation for switching
context-dependent behavior. In Proceedings of the
Joint Modular Languages Conference (to appear).
Springer LNCS, 2006.

[7] J. Keeney and V. Cahill. Chisel: A policy-driven,
context-aware, dynamic adaptation framework. In
Proceedings of the Fourth IEEE International
Workshop on Policies for Distributed Systems and
Networks (POLICY 2003), pages 3–14, 2003.

[8] Y. Smaragdakis and D. Batory. Implementing layered
designs with mixin layers. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), pages 550–570.
Springer-Verlag LNCS 1445, 1998.

[9] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
and B. N. Jørgensen. Dynamic and selective
combination of extensions in component-based
applications. In Proceedings of the 23rd International
Conference on Software Engeneering (ICSE’01), pages
233–242. IEEE Computer Society, May 12–19 2001.

[10] A.-Y. Turhan, T. Springer, and M. Berger. Pushing
doors for modeling contexts with owl dl a case study.
In PERCOMW ’06: Proceedings of the Fourth Annual
IEEE International Conference on Pervasive
Computing and Communications Workshops, page 13,
Washington, DC, USA, 2006. IEEE Computer Society.

[11] D. Wagelaar and V. Jonckers. Explicit platform
models for mda. In MoDELS, pages 367–381, 2005.

[12] D. E. Young. Lisp-based intelligent software agents
http://lisa.sourceforge.net, 2006.


