
Object Identity and Dynamic Recomposition of Components

Pascal Costanza, Oliver Stiemerling, and Armin B. Cremers
University of Bonn, Römerstraße 164

D-53117 Bonn, Germany
{costanza, os, abc}@cs.uni-bonn.de

Abstract

Dynamic recomposition of components in a program imposes advanced requirements on
the expressive power of object-oriented programming languages. For example, the replace-
ment of a component with another reveals consistency problems stemming from the fact
that the concept of object identity tries to fulfil the distinct purposes of reference and com-
parison. By clearly separating the two notions and providing means to manipulate them
independently, the consistency problems can completely be avoided.

1: Introduction

The purpose of this paper is to demonstrate how consistency problems arising from
dynamic recomposition of software components can be solved by a novel approach of dealing
with object identity in an object-oriented programming language.
To set the stage, we first describe the Evolve runtime and tailoring platform as an

example for a system that provides facilities for dynamic recomposition of software compo-
nents. Using the simple example of inserting a new component into an Evolve application
during runtime, we identify and discuss a number of consistency problems.
These problems stem from the fact that the concept of object identity combines two

distinct notions. One is the facility of object reference which permits object correlation
and access to objects’ properties. The other is the facility of object comparison which
permits one to decide if two variables refer to the same object. Both notions impose several
restrictions on what can be expressed in terms of identity, and simultaneously satisfying
them has resulted in the concept of object identity fulfilling only the somewhat limited
intersection of these two sets of requirements.
By clearly differentiating the two notions of reference and comparison and providing

means to manipulate them independently, we are able to relax the requirements for each
notion and introduce new and powerful operations. By employing these operations we can
completely avoid the shown conistency problems.
The following section gives an overview of the Evolve project, its runtime and tailoring

platform, the FlexiBeans component model and an example application. The section
discusses how component-based Evolve applications can be reconfigured during runtime
to meet changing requirements. The problems arising from dynamic recomposition and ob-
ject identity are discussed. Section 3 describes the consequences of separating the notions
of reference and comparison, especially with regard to the possibility of introducing new

1

Figure 1. A simple distributed shared to-do list application based on the Evolve
platform

operations into the Java programming language, and it discusses how the dynamic recom-
position problems can be solved by these new operations. Finally, we relate our approach
to other work and conclude.

2: The Evolve Project

The Evolve project [9, 10, 11] at the Institute of Computer Science III at the Uni-
versity of Bonn investigates the use of software components after initial development and
deployment in order to provide tailorability for complex distributed applications.
In the course of the project, a runtime and tailoring platform has been designed and im-

plemented that supports dynamic recomposition of distributed applications. This platform,
its component model FlexiBeans and an example application are discussed.

2.1: The Evolve Platform

The Evolve platform is designed to support the deployment and subsequent adaptation
of arbitrary distributed component-based multi-user applications. It is independent from
domain specific functionality and can thus be used to provide many different software
systems with the property of adaptability. Fig. 1 depicts a simple example of a component-
based application made adaptable by the Evolve platform - a shared to-do list employed
by two users to coordinate their tasks:
Client 1 belongs to a manager, client 2 to a subordinate. The actual data of the shared

to-do list is stored on the Evolve server (in the middle of fig. 1) employing a (invisible)
server component. The clients are tailored to meet the requirements of their respective
owners. While the subordinate may only see the contents of the list and mark entries
as “done”, the manager can actually add new entries to the list and delete them. The
distributed application is built from a set of prefabricated components.
In a traditional system, the composition would be static after development and deploy-

ment. The Evolve platform, however, maintains - and permits the manipulation of - the
system’s component structure. During the use of the system, a system administrator, out-
side consultant or even an end user can switch to the tailoring mode (fig. 2) in which he

Figure 2. Screenshot of the 3D tailoring interface (showing the tailoring perspective
of an application)

or she can inspect and manipulate the entire distributed application (if he or she has the
right to do so).
Fig. 2 depicts a 3D user interface for component-based tailoring which accesses the flexi-

bility provided by the Evolve system. The two circles in the background represent the two
clients, together with the virtual screens onto which appearance and position of the visible
components are projected. All components — visible and invisible — are represented as
boxes depicting the compositional structure of the application. The circle in the foreground
represents the server that contains the invisible component for storing the contents of the
shared to-do list.
The tailor can move around the 3D component scene and perform manipulations, e.g.

concerning the positioning of the visible components on the screen or the connections of the
components. He can remove component instances or add new ones from a repository (not
shown in fig. 2). The parameterization of component instances can also be manipulated. In
short, the tailor has full control over every aspect of the application’s composition, whenever
the requirements of the supported group change. Furthermore,

• tailoring operations can be performed during runtime. In extremis, a system admin-
istrator can add components, while the user is working with the shared to-do list.
The system does not have to be shut down and the state of all other components is
maintained.

• tailoring operations can be performed remotely. The whole system can be tailored
from any workstation in the network. This feature supports models of centralized
and decentralized system management.

• the effect of tailoring operations can be shared among many users. In the example,
if other users share the definition of the subordinate client, the effect of the tailoring
operations is propagated to all running instances of that definition.

• the effect of tailoring operations can be restricted to subgroups of users. This feature
permits the accommodation of individual differences.

• tailoring operations can be applied to any level of the compositional hierarchy. A
system administrator might inspect and manipulate the system on a very fine-grained
level, while an end user might prefer a more high level view.

Summarizing, the Evolve platform is responsible for maintaining component structures
during runtime and for providing functionality for manipulating these structures. The
second central element of the approach is the component model, i.e. the specification that
tells the programmer exactly what a component is.

2.2: FlexiBeans

The component model of the Evolve platform is the FlexiBeans model that extends
the JavaBeans model [3] with the concepts of:

• named ports, permitting the differentiated event handling on the compositional level
mentioned above, without having to dynamically produce and compile (adapter-)code.

• shared objects, permitting a less strongly synchronized style of interaction in the
fashion of a “pull”-like data flow (need- and not creation-driven exchange of data).

• remote interaction, permitting the composition of distributed groupware applications
based on Java RMI (Remote Method Invocation). A button situated on one machine
can, for instance be directly connected to a component on another machine.

The complete FlexiBeans specification can be found in [12].

2.3: An Example Application

This section gives an example how a distributed groupware application can be built from
a set of FlexiBeans components. In the graphical representation, shared object ports are
represented by rectangles, while event ports are represented by circles. The polarity of the
port (provided or required) is given by the interior of the shape (filled = provided).
Shared to-do lists support coordination of work activities in small groups (2-10 persons).

They contain entries that describe a task to be done, its title, begin, deadline, and a flag
indicating the status of completion (in progress, completed). Depending on the structure of
the group and its work habits, there can be distinct group members who add tasks, perform
tasks, check for completion, and monitor or distribute work.
The shared to-do list application presented here is highly simplified for presentation

purposes. However, applications with the same basic functionality are used in IT sup-
port departments, call centers, and generally for coordination in small groups which are
confronted with a lot of short-term, well-defined tasks.
The shared to-do list component set consists of four visible and one invisible component.

Table 1 gives an overview and informally describes the semantics of each component. These
components can now be used to compose a distributed shared to-do list application. It is
the same application as in fig. 1 and 2.
This application is distributed over three locations. The shared list component instance

resides on a server and is connected to an instance of the supervisor client on one machine
and to an instance of the subordinate client on another machine. The different requirements

The visualizer component

This component is visible for the user and displays the current

contents of a shared list. It has three ports: the first port

connects to a shared list component, the second port receives

events which indicate a change in a shared list, and the third

port shares the currently marked entry in the list with any

interested component.

The editor component

This component is actually an complex component which is

composed of several visual subcomponents. For simplicity it is

regarded as atomic here. The two ports connect to a shared list

and the marked entry of a visualizer component. The user can

add new entries to the list (if the content of marked entry is

[new entry]) or edit other selected entries in the list. The large

text box on the right can be used to describe the task.

The delete button component

This component is connected to a shared list and a marked

entry and – if pressed – deletes the marked entry in the list

The done button component

This component is connected like the delete button. When

pressed, it sets the flag of the marked entry to “completed”.

The shared list component

This component is the only invisible component. It usually

resides on a server and maintains a list of tasks. The list is

shared via the ToDoList port and other components are notified

of changes via the ListChanged event port.

Visualizer

ToDoList
RemoteList

ToDoList
RemoteList

ToDoList
RemoteList

ToDoList
RemoteList

ToDoList
RemoteList

ListChanged
RemoteActionEvent

ListChanged
RemoteActionEvent

MarkedEntry
RemoteEntry

MarkedEntry
RemoteEntry

MarkedEntry
RemoteEntry

MarkedEntry
RemoteEntry

Editor

Delete button

Shared List

Done button

Table 1. Components of the Shared To-Do List Framework

of supervisor and subordinate are met by different compositions of components taken from
the set of table 1.

2.4: Problems with Dynamic Tailoring

Assume that the application described above is to be extended with a security component
on the client side. This component encrypts the traffic between the client and the server.1

Fig. 3 shows this change. The security component is inserted between the remote connec-
tion to the server and the delete button, the visualizer and the editor component. Before
we can discuss the problems that can arise when inserting the security component into the
running application, we have to leave the rather abstract component level and deal with
the object-oriented implementation of the FlexiBeans component model.
The shared object connection between the three client components (editor, visualizer and

delete button) and the shared list component on the remote server is realised on the oo-level
by giving the reference of a local stub object (on the client) representing the shared list on
the remote computer to these three components. We have used Java RMI to abstract from
the details of the remote interaction and will not discuss this point further in this paper.
The right side of the fig. 3 depicts how the change described above is reflected on the

oo-level. In our current implementation of the Evolve platform in JDK 1.2, the change
comprises the following steps (not necessary in that exact order): First the new security
component has to be instantiated, then it has to be connected to the stub object. The
connection of the three visible components have to be — one after the other — redirected

1Obviously, a similar component has to be instantiated on the server side — however, for the purpose of
this section, we are only concerned with the client side.

Security

Before

After

Component levelComponent level Object levelObject level

Stub Obj.Stub Obj.

Stub Obj.Stub Obj.

Editor

Editor

Editor

Editor

Security

Visualizer

Visualizer

VisualizerVisualizer

Delete Bu.Delete Bu.
Delete Bu.Delete Bu.

Delete Bu.Delete Bu.Delete Bu.Delete Bu.

Figure 3. The supervisor client is extended with a security component (left). On the
object level (right), this causes the redirection of several object references.

from the stub object to the new security object instance.2

The point is, that the change currently cannot be performed atomically. This causes the
problem that during the tailoring operation (or rather transaction), the application is in
an inconsistent state, in which, for instance, the editor component is not connected to the
stub object. If the user desires to write an entry into the shared list and presses the “ok”
button, nothing happens. The same problem holds, if the delete button is not connected.
If the visualizer is not connected and an update event is sent from the server, the visualizer
cannot show the current list and is consequently not consistent with the list on the server.
Obviously, these problems could be handled programmatically. One could implement the

components in a fashion which deals in a sensible way with inconsistent connections and
states. This, however, would make the components larger and — even worse — implies
that the component programmer has to anticipate the user of the components in a dynamic
environment. This is, at least today, almost never the case.
Consequently, we have to look for other ways to deal with unanticipated dynamic recon-

figurations in a sensible and - foremost - safe way.

3: Reference and Comparison

Instead of changing each reference to the stub object and letting it refer to the new
security object one by one, it would be straightforward if we could simply “replace” the stub
object by the security object without changing the involved references. Such a replacement
would be an atomic operation, and hence, avoids the problems shown above.

2These steps can, for instance, be performed in the 3D interface shown in fig. 2. The change could also
be performed automatically by a small script or procedure.

object table memory addresses objects
(with comparands)

OOPs

*

+

~

#

%

Figure 4. Identity Through Indirection — references to objects are realised as OOPs
— combined with Identity Through Surrogates — each object is supplemented with
a comparand.

In fact, the programming language Smalltalk provides an operation become:, that en-
ables the programmer to “swap” the objects pointed to by two references without actually
changing the references. However, the effects of become: are usually obscure and so its
application is generally considered dangerous.3

We believe that the reason for these obscurities is that the concept of object identity in
fact combines two distinct notions. One is the facility of object reference, which permits
object correlation and access to objects’ internal states. The other is the facility of object
comparison, which permits the decision if two variables actually point to the same object.
In the following paragraphs we discuss the central idea of our approach of separating the
notions of reference and comparison and some of its consequences.
Our approach can be illustrated with an implementation technique called “Identity

Through Indirection” in [5]: Here, a reference to an object is realised as an object-oriented
pointer (OOP). An OOP points to an entry in an object table which holds physical memory
addresses. This technique is employed in many Smalltalk implementations as well as the
first Java implementations, among others.4

In our approach, the sole purpose of an OOP is to reference an object — OOPs are never
compared. To be able to compare objects we combine “Identity Through Indirection” with
“Identity Through Surrogates” [5]: Each object is supplemented with an attribute storing
a comparand.5 Comparands are system-generated, globally unique values that cannot be
directly manipulated by a programmer. Comparing objects (o1 == o2) then means com-
paring their comparands (o1.comparand == o2.comparand), but they are never used for
referencing (see fig. 4).
Based on this scheme, we outline the programming language Gilgul in the following

sections. It is an extension to the Java programming language [1] that is currently being
developed at the Institute for Computer Science III of the University of Bonn. It introduces

3For example, see the Smalltalk FAQ [8] for further details.
4Note that an actual implementation of our model does not have to resemble its illustration given here.
5In [5] the term surrogate is actually used for this additional attribute. Since this term might raise the

wrong associations, we use the term comparand instead to stress that this attribute is intended to be utilized
within comparison operations only.

o1

o2

o3

(1) o2 = o1;

o1

o2

o3

(2) o2 #= o3;

Figure 5. Reference Assignment: After executing o2 #= o3, all three variables refer
to the same object. Since o1 holds the same reference as o2, it is also affected by
this operation.

means to manipulate references and comparands and has been carefully designed not to
compromise compatibility with existing Java sources.
There are three levels that can be manipulated when dealing with variables in Gilgul:

the reference level, the object level and the comparand level. A class instance creation
expression (new MyClass(...)) results not only in the creation of a new object, but also
in the creation of a new reference and a new comparand. The class instance creation
expression returns the reference to the object, which in turn has the comparand among its
attributes.

3.1: Operations on References

In Gilgul, the reference assignment operator #= is introduced to enable the proposed
replacement of objects:6 The reference assignment expression o1 #= o2 lets the reference
stored in the variable o1 refer to the object o2 without actually changing the reference.
Effectively, this means that all other variables holding the same reference as o1 refer to the
object o2, too. This can be simply realised by copying the memory address of o2 to the
entry of o1 in the object table.
Consider the following statement sequence.

o1 = new MyClass();
o2 = o1;
o2 #= o3;

After executing this statement sequence, all three variables are guaranteed to refer to the
same object o3, since after the second assignment, o1 and o2 hold the same reference (see
fig. 5).
Note that the reference assignment operator #= is a reasonable language extension due

to the fact that the simple assignment operator = that is already defined in Java copies
the reference from the right-hand operand to the left-hand variable, but not the memory
address stored in the respective entry in the object table.
Since the null literal null does not refer to any object, the reference assignment is pre-

vented from being executed on null. The expression null #= o2 is rejected by the compiler,
and o1 #= o2 throws a GilgulRestrictionException when o1 holds null.7 This ensures that

6The hash symbol (#) is meant to resemble the graphical illustration of an object table.
7The GilgulRestrictionException is an unchecked exception, so this case is similar to the throw of a Null-

PointerException when attempting to access the properties of an object that holds null. Both types of

*

Figure 6. Multiple Naming: Two entries in the object table can hold the same mem-
ory address. Comparison must yield true, because it is based on the single com-
parand stored in the object.

a programmer is not able to erroneously redirect all variables holding null to a non-null
object. Note, however, that o1 #= null is allowed when o1 does not hold null and redirects
all variables having the same reference as o1 to null.

3.2: Multiple Naming

The reference assignment operator #= introduces the possibility that different references
may refer to the same object, a case that cannot occur in a pure Java program, but only
when this operator is applied. What happens here is that different object table entries may
hold the same memory address, as is depicted in fig. 6.
This also illustrates one of the reasons why our model does not allow references to be

compared — it is not clear whether an attempt to compare references should actually be
performed on the OOPs or on the memory addresses. Comparison of the OOPs in fig. 6
would indicate the difference of the references whereas comparison of the memory addresses
would indicate sameness. For this reason, other proposals call for means to merge objects
and their identities into a single object in order to avoid the described ambiguity of reference
comparison. For example, [4] proposes an operation MakeSameObject(...) that has the
described effect.
However, the combination of different OOPs into one entry after application of the

reference assignment operator #= would actually lead to unexpected results. For example,
the merge of the two references “The President of the USA” and “Bill Clinton” would either
mean that a change of the former would also change the latter, or otherwise a change of any
of the involved references would have to be prevented altogether. Both options are clearly
unacceptable.
In our model, OOPs are never compared, but comparison is performed on the comparands

stored in the involved objects. Since comparands are properties of their respective objects,
this should also be easier to remember by a programmer than an arbitrary decision to base
comparison operations on either OOPs or memory addresses.
Since the two references in fig. 6 refer to the same object, in this case the comparison

operation does not have a choice and must unambiguously indicate sameness. If one wants
to distinguish between the two references, one of them can be redirected to a different
object that forwards all messages to the original object. For example, the reference “The
President of the USA” may refer to a kind of “role” object decorating the object referred
to by “Bill Clinton” by appropriately applying the reference assignment operator #= (see

exception can be avoided by testing variables against null beforehand.

billClinton

thePresident

*

#

Figure 7. Multiple Naming: Insertion of a decorator object enables one to distin-
guish between two references. (Contrary to what the simpli£ed illustration sug-
gests, the grey arrow is actually a pointer into the object table, not a “direct” refer-
ence to the target object.)

fig. 7). This also allows a programmer to define methods differently within such a “role”
or decorator object so that the behaviour of “Bill Clinton” can vary depending on whether
he is approached as “The President of the USA” or privately. The result of the compari-
son operation may be further influenced by manipulating the comparands in the involved
objects, as shown in the following paragraphs.

3.3: Operations on Comparands

It is obvious from a technical point of view that comparands may be freely copied between
objects. There are, in fact, good reasons on a conceptual level to allow copying comparands.
When a programmer introduces decorator objects, they usually have to “take over” the
comparand of the wrapped object so that comparison operations that involve “direct”
references to a wrapped object yield the correct result.
Comparands are introduced in Gilgul by defining a pseudo-class Comparand in the

package java.lang.*. This class can only be used to create new comparands via class instance
(“comparand”) creation expressions (new Comparand()), but not as a reference type in the
declaration of variables. The only place where it can be understood as being used as a type
is in the definition of java.lang.Object, as follows.

public class Object {
public Comparand comparand;
...

}
The equality operators == and != that are already defined on references in Java are

redefined in Gilgul to operate on comparands, such that o1 == o2 means the same
as o1.comparand == o2.comparand, and o1 != o2 means the same as o1.comparand !=
o2.comparand.
Given these prerequisites, we can let a wrapper “take over” the comparand of a wrapped

object in order to make them become equal by simply copying it as follows: o1.comparand
= o2.comparand.
Ensuring the uniqueness of a single object is always possible by assigning a freshly created

comparand as follows: o1.comparand = new Comparand().
Since comparands cannot directly be manipulated, there are no limitations on how they

are implemented in a concrete virtual machine. The only requirements they have to fulfil
are as follows.

• If o1.comparand and o2.comparand have been generated by the same (different) class
instance or comparand creation expression, then o1.comparand == o2.comparand
yields true (false), and o1.comparand != o2.comparand yields false (true).

The comparand of the null literal null is prevented from being accessed via null.comparand,
or o1.comparand when o1 holds null, so it cannot be copied to other objects, and it cannot be
replaced. An attempt to access null.comparand is rejected by the compiler, and o1.comparand
throws a GilgulRestrictionException when o1 holds null. This ensures that testing equality
against null is guaranteed to be non-ambiguous.

3.4: Operations on Objects

Besides the operations on references and comparands that are newly introduced in
Gilgul, the operations on objects, i.e. the methods defined in their corresponding classes,
are still available as a matter of course. However, there are some interdependencies be-
tween certain standard methods, namely equals(...) and hashCode(), and the ability to
copy comparands between objects.
Note that the standard definition of equals(...) relies on the definition of the equality

operators == and !=, and therefore is affected by the fact that they have been redefined
to operate on comparands instead of references. Hence, it yields true when the comparands
of the corresponding objects are the same. As a consequence, the standard definition of
hashCode() has been changed to return a hash code value for an object’s comparand, since
the contract of hashCode() is based on equals(...).8

From this perspective comparands can be seen as an additional way to redefine the
method equals(...) by just copying them between objects. In certain cases, this may suit
the programmer’s imagination better than having to override equals(...) and for example
send appropriate comparison messages to referenced objects. Furthermore, they relieve the
programmer of the requirement to remember to override hashCode() accordingly whenever
he or she is about to redefine equals(...).
Another consequence is that the equality operators == and != and the method equals(...)

are always redefined in a uniform way by copying of comparands, unless equals(...) is
explicitly overridden by the programmer. This complies with the suggestion that there
should be only one comparison operation per object, as is stated for example in [2]9 or
[6]10. From this perspective, the decision to include two different ways to compare objects
into the Java programming language may be considered questionable.

3.5: Application to Dynamic Tailoring

Returning to our given problem, we are now able to apply the new operations to achieve
the desired insertion of a security component atomically. We could apply stubObject #=

8[13] states that if “two objects are equal according to the equals(Object) method, then calling the
hashCode method on each of the two objects must produce the same integer result.” A comparand’s hash
code value fulfils the same requirement, except that it is based on the equality operator on comparands
(==) instead of the method equals(...) which is not supported by comparands.

9It states that a programming language should provide “only one copy method and one comparison
method for each class. The designer of the class, rather than its clients, should choose appropriate semantics
for these methods.”

10“Use method equals instead of operator == when comparing objects. [. . .] Rationale: If someone defined
an equals method to compare objects, then they want you to use it. Otherwise, the default implementation
of Object.equals is just to use ==.”

stubObject

securityObject

orgStub

Figure 8. Naive application of stubObject #= securityObject results in an unwanted
cycle: When securityObject.orgStub holds the same reference as stubObject before-
hand, it will refer to securityObject afterwards.

securityObject to let securityObject “take over” the identity of stubObject. However, one
has to be careful, because securityObject certainly has to refer to the original stubObject
in order to delegate messages that it cannot handle for itself. Regard the following naive
sequence of operations.

securityObject.orgStub = stubObject;
stubObject #= securityObject;

This would be erroneous, because afterwards securityObject.orgStub would refer to secu-
rityObject since it contains the same reference as stubObject according to the first simple
assignment. This of course results in a cycle, and therefore to non-terminating loops for
messages that cannot be handled by securityObject (see fig. 8). The following sequence
however is correct (see fig. 9).

tmp #= stubObject; //let a new reference point to stubObject

securityObject.orgStub = tmp; //tmp instead of stubObject

securityObject.comparand
= stubObject.comparand; //ensure that equality behaves well

stubObject #= securityObject; //tmp and so securityObject.orgStub remain unchanged

Note that the actual “replacement” of stubObject is initiated by the last operation, and
thus is indeed atomic.
As we can see the operations that are newly introduced in Gilgul give the programmer

the possibility to “replace” the former stub object atomically and thereby introduce the
security feature without having to deal with any consistency problems. Furthermore, the
involved components need not anticipate such modifications, reducing the complexity of
the development of the actual components to a great extent.

stubObject

securityObject

orgStub

tmp

Figure 9. Correct application of stubObject #= securityObject: When securityOb-
ject.orgStub holds a different reference to the same object as stubObject beforehand,
it will still refer to the former stubObject afterwards, since the temporary reference
is not affected by this operation. Therefore, the unwanted cycle is avoided.

4: Related Work

There are only a few works discussing the concept of object identity and the incorporated
notions of reference and comparison, for example [7] which appears to be the first work that
gives a detailed differentiation of values and objects, and [5] which focuses the discussion
on the properties of object identity rather than the differences in values. In both works
the notions of reference and comparison are implicitly subsumed in the concept of object
identity.
[14] gives a formal model of object identity that again incorporates both notions of

reference and comparison. It introduces a set of requirements with the purpose of ensuring
that “in an administration that uses a single oid scheme, we always can count objects by
counting oids.” The act of counting objects is closely related to the notion of comparison,
so the emphasis of the discussion in that paper lies on this notion. Our work actually shows
that these requirements can be abandoned if we clearly separate the notions of reference
and comparison.
[4] also discusses various aspects of object identity. It argues that object identity is

not about comparing objects but about referencing them. “Deciding which things are the
same is very carefully excluded from the model.” It introduces the concept of synonymous
handles, that are essentially different identifiers referencing the same object. For example,
an operationMakeSameObject(...) is sketched. This is similar to the case of multiple naming
in our model, however we have shown that there is no need to actually merge the OOPs
involved because they are never compared.
[2] gives a thorough examination of several variations of copying and comparison oper-

ations. For example, it shows that there are three copying operations, namely “assign”,
“replace” and “clone”. The comparison operations are divided into variations of identity,

shallow and deep equality, stressing the problematic subtleties, especially of the last two
that are generally considered reasonable and harmless. Put very roughly, both copying and
comparison operations can be separated into identity-based and value-based. Our approach
focuses on the identity-based operations and explores new possibilities in this realm, inten-
tionally ignoring the value-based approaches. In this sense, that paper is orthogonal to our
work.
The programming language Smalltalk provides an operation become: that enables one to

“swap” the objects pointed to by two references without actually changing the references.
Since most Smalltalk implementations are based on object tables, this can very easily be
realised. This is similar to what can be expressed by our reference assignment operator
#=. For example, see the Smalltalk FAQ [8] for further details.

5: Summary

In this paper we have demonstrated severe consistency problems stemming from the
restrictions imposed on the concept of object identity in object-oriented programming lan-
guages. We have shown this in the context of a concrete component-oriented software
system that allows the reconfiguration of components during runtime.
We have then given a detailed differentiation between reference and comparison, two

notions that are usually subsumed in the concept of object identity. Most probably the
main reason for this subsumption lies in the fact that physical memory addresses can be
used to implement both purposes in an extremely efficient way. However, if we separate
the two notions, we can greatly increase the expressiveness of a programming language.
We have designed the programming language Gilgul, a compatible extension to Java. It

introduces very few constructs: the pseudo-class Comparand and the reference assignment
operator #=. It also changes the definition of the existing equality operators == and !=
according to our model.11

Our model is a generalization of what can be expressed in terms of object identity
in current object-oriented programming languages. Our model also greatly simplifies the
redefinition of the standard method equals(...), a task that is needlessly cumbersome and
error-prone in pure Java.
We have shown how the operations that are newly introduced in Gilgul can be applied

on an example of dynamic recomposition. They allow the programmer to achieve the
desired replacement of components atomically, thereby completely avoiding the mentioned
consistency problems.
However, there are some issues that we have not dealt with in this paper. We have

investigated the problem of ensuring type soundness when applying the reference assignment
operator #=. In essence it must be ensured that the set of types of an object a reference
is redirected to by applying this operator has to be equal to or a superset of the types of
the former object. In order not to reduce the set of assignable objects too much by this
requirement we have introduced new (light-weight) constructs into Gilgul’s type system.
There are also some semantic safety issues that are not related to the type system. The
results of these investigations will be reported elsewhere.

11A compiler and runtime system for Gilgul is currently being developed at the Institute of Computer
Science III of the University of Bonn.

As a bottom line, Gilgul is not a totally new approach of dealing with issues of object
identity. As can be seen from the related work, many of its ideas have come across pre-
viously. Nonetheless, Gilgul is the first approach known to the authors that strictly and
cleanly separates the notions of reference and comparison on the level of a programming
language, and in this way throws new light on the concept of object identity.

6: Acknowledgements

The authors would like to thank their colleagues at the Institute of Computer Science III
of the University of Bonn for many fruitful discussions. They also would like to particularly
thank Tom Arbuckle, Michael Austermann, Peter Grogono, Arno Haase, Günter Knie-
sel, Thomas Kühne and Kris De Volder for their critical review of earlier drafts of this
publication which led to substantial improvements. This work is partially located in the
TAILOR project at the Institute of Computer Science III of the University of Bonn and
has been supported by Deutsche Forschungsgemeinschaft (DFG) under grant CR 65/13.

References

[1] K. Arnold and J. Gosling, The Java Programming Language, Second Edition, Addison-Wesley, 1998.

[2] P. Grogono and M. Sakkinen, Copying and Comparing: Problems and Solutions, in: E. Bertino (ed.),
ECOOP 2000 — Object-Oriented Programming, Proceedings, Springer LNCS 1850, 226-250, June,
2000.

[3] JavaSoft, JavaBeans 1.0 API Specification, Version 1.00-A ed. Mountain View, California: Sun Mi-
crosystems, 1997.

[4] W. Kent, A Rigorous Model of Object References, Identity and Existence, Journal of Object-Oriented
Programming, 4(3):28-36, June, 1991.

[5] S. N. Khoshafian and G. P. Copeland, Object Identity, OOPSLA ’86 Proceedings, 406-416, September,
1986.

[6] D. Lea, Draft Java Coding Standard, http://gee.cs.oswego.edu/dl/html/javaCodingStd.html,
February, 2000.

[7] B. J. MacLennan, Values and Objects in Programming Languages, SIGPLAN Notices, 17(12):70-79,
December, 1982.

[8] D. N. Smith, Dave’s Smalltalk FAQ, http://www.dnsmith.com/SmallFAQ/, July, 1995.

[9] O. Stiemerling, Component-Based Tailorability, Ph. D. Thesis, in Institute of Computer Science III,
University of Bonn, 2000.

[10] O. Stiemerling, R. Hinken, and A. B. Cremers, Distributed Component-based Tailorability of CSCW
Applications, in: Proceedings of ISADS ’99, Tokyo, Japan, IEEE Press, pp. 345-352, 1999.

[11] O. Stiemerling, R. Hinken, and A. B. Cremers, The Evolve Tailoring Platform: Supporting the Evo-
lution of Component-Based Groupware, in: Proceedings of EDOC ’99 (Enterprise Distributed Object
Computing), Mannheim, Germany, IEEE Press, pp. 106-115, 1999.

[12] O. Stiemerling, FlexiBeans Specification V 2.0, Institute of Computer Science III, University of Bonn,
Working Paper, 1998, (http://www.cs.uni-bonn.de/~os/Publications/Flexibeansv20.ps).

[13] Sun Microsystems, Inc., Java 2 SDK, Standard Edition Documentation, Version 1.3,
http://java.sun.com/products/jdk/1.3/docs/, 2000.

[14] R. Wieringa and W. de Jonge, Object Identifiers, Keys, and Surrogates — Object Identifiers Revisited,
Theory and Practice of Object Systems, 1(2):101-114, 1995.

