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Abstract

Aspects based on join points that occurred in the
execution history of a program provide a powerful
way to make applications aware of their context.
We present HALO, a logic metaprogramming ap-
proach based on temporal logic, that is designed
with context-awareness in mind. A number of illus-
trative examples demonstrate HALO’s expressivity,
including expressions about past events which con-
tain variables only bound in their future.

1 Introduction

In a good modular design, program concerns are de-
composed into packages, classes, methods, etc., so
that each module implements a different concern.
Some concerns, however, are crosscutting, which
means that their implementation is typically scat-
tered over different modules. Aspect-oriented Pro-
gramming (AOP) focuses on the modularisation of
such crosscutting concerns [7]. An AOP language
provides a notion of join points that are events in
the execution of a program, a pointcut language
that allows declarative description of sets of join
points, and advices that effect the program behav-
ior before, after or around the join points captured
by a pointcut.

The notion of context-aware aspects has been
introduced in earlier work by Tanter et al. [11]:
Related to the idea of context-aware applications,
context-aware aspects are aspects whose behavior is
context- dependent, which includes the possibility
to restrict aspects to certain contexts. In that pa-
per, the authors address the problem that current
AOP languages incorporate a too limited notion
of context when considering context-aware applica-

tions (e.g. context is only information on the join
point and not on the state of the whole program)
and that therefore the definition of context needs
to be extended, for example to include the ability
to refer to past contexts. The use of a specialized
pointcut language is proposed, but only back-end
technology based on Reflex is discussed.

In this paper, we introduce HALO, a new point-
cut language designed with context-awareness in
mind. In the next two sections, we introduce the
notion of context-aware aspects using an example
and give a brief overview of the extensions that were
made to the Reflex framework to support them.
Section 4 introduces HALO, discusses how it can
be used to implement the example context-aware
aspects and outlines some issues with weaving. We
end the paper by discussing the related work and
stating our conclusions.

2 An E-shop Application

Consider a simple e-commerce application. A shop
has customers and sells articles. Customers have
an account and have to login to put shop articles
in their basket and to checkout their basket. The
UML diagram is shown in Figure 1.

In order to attract customers to the shop, the
shop occasionally engages in promotional market-
ing campaigns. Such a promotional campaign has
two effects on the shop, which can be implemented
as aspects: The advertising aspect adds banners to
the shop’s pages to advertise the promotion, and
the discounting aspect gives customers a discount
on articles when they check out. The shop applica-
tion can automatically engage in promotions based
on certain conditions. There can be several varia-
tions of conditions that activate a promotion:
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Figure 1: E-commerce application

• The current time is in a pre-set interval (e.g.
before Christmas, “happy hour”, ...).

• There is a stock overflow for a particular item.

The discount aspect affects the computation of
the price of the basket when the customer checks
out. Whether a discount is given depends on the
activation of a promotion, but again, there can be
several variations:

• The promotion is active when the customer
checks out.

• The promotion is active when the customer
logs in.

• The promotion is active when an article is
added to the shopping basket.

To illustrate the program’s desired behavior, con-
sider a sample program run depicted in Figure 2.
There is a timeline depicted for two users: we see
that there is temporarily one promotional context
active, namely seasonal-promo. On the time-
line, we see that user 1 logs in when the context
seasonal-promo is active: At that time, the web-
site is popping up banners to lure customers to lo-
gin (e.g. “Login now and get a discount on check-
out!”). The idea is that when user 1 checks out
at a time the seasonal-promo context is no longer
active, user 1 still gets her discount related to the
seasonal-promo context. User 2 however does not
get this discount, as she logged in when the promo-
tional context was not active, but no harm done:

The banners promising a discount were no longer
being displayed when she logged in anyway.

In the example, there are two aspects that de-
pend on the same promotional context of the shop.
First of all, appropriate banners must be displayed
on the website when a promotion is active and sec-
ond, the promotion context affects the discounts a
particular user receives. So when considering an
implementation, we need to be able to separate the
promotion context definition so that we can use
it for implementing both the banners and the dis-
count aspects.

In the next section we discuss the extensions that
were made to Reflex to implement aspects such as
these.

3 Context-Aware Aspects in
Reflex

Tanter et al. have previously presented support for
context-aware aspects in an extension of the Reflex
framework [11]. Reflex is an open reflective exten-
sion of Java that supports both structural and be-
havioral modifications of programs. The core con-
cept of Reflex is the link; although there are both
structural and behavioral links in Reflex, we only
need to explain behavioral links here. A behav-
ioral link invokes messages on a metaobject at oc-
currences of operations specified by a hookset. A
hookset, like a pointcut, is a composable entity that
specifies a set of operations based on selection con-
ditions. Hooksets express lexical crosscutting only
(pointcut shadows), but activation conditions can
be added to a link which express additional dy-
namic conditions.

The Reflex framework was extended with sup-
port for defining contexts, and for defining new
context-specific link activation conditions. New
contexts can be defined by subclassing the class
Context and overriding the getState method. The
method must return null which indicates the ap-
plication is not currently in that context, or a
ContextState object which indicates the context
is active with certain parameters. An example of a
parameter would be the rate of overflow for a stock
overflow context. New link activation conditions
that depend on contexts can be defined by subclass-
ing CtxActive. A straightforward example is the
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Figure 2: E-commerce application program run

subclass CurrentlyInCtx, it can be used for link
activation conditions that simply check whether
the application is currently in a particular con-
text. The abstract subclass SnapshotCtxActive
provides support for defining activation conditions
that check if the application has been in a partic-
ular context in the past. It provides support for
taking “snapshots” of the state of the context at
particular points so that these can be checked later.
Examples are instances of the CreatedInCtx class:
These activation conditions on a link are true if the
object in which the link intercepted an operation
was previously created when a specific context was
active.

While the extensions to Reflex introduce sup-
port for context-aware aspects and in particular the
snapshotting of contexts necessary to refer to past
contexts, the extension is in the back-end only and
no dedicated pointcut language has yet been in-
troduced. In the next section we introduce such a
pointcut language, dubbed HALO.

4 HALO: A Temporal Logic
Pointcut Language

We present HALO, a novel pointcut language
based on temporal logic programming. This makes
HALO similar to logic-programming-based point-
cut languages like CARMA [5], but the use of tem-
poral logic gives HALO additional operators to ex-
press temporal relations between conditions in a
pointcut. A pointcut can thus refer to past join
points and the context in which these occurred. In

this section, we first introduce some basic notions
of temporal logic and we then show how the aspects
from Section 2 can be implemented using HALO.
To conclude the section, we cover the details of a
prototype implementation of HALO based on Com-
mon Lisp.

4.1 Temporal Logic

The term temporal logic [9] refers to all logics that
allow the representation of temporal information,
meaning the truth value of a formula changes over
time. A temporal logic introduces so-called tempo-
ral operators in a logic (e.g. “always” and “some-
time”) next to the usual truth-functional operators
(e.g. “and”, implication, etc.) which can be used
in rules to specify – on a high level – at what time
a rule applies. HALO’s design is based on metric
temporal logic (MTL) [3] [2] because MTL intro-
duces temporal operators in first order predicate
logic (e.g. previous, sometime-interval, etc.) that
allow one to connect formulae indicating that the
second formula becomes true within a certain time-
interval of time points from when the first formula
becomes true: This idea can be used to describe
an execution history as a sequence of events. We
next explain how aspects, advices, pointcuts etc.
are written in HALO.

4.2 The HALO Language

HALO defines predicates about join points, higher-
order temporal operator predicates and a predi-
cate escape which allows pure Lisp to be used as
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logic conditions. These predicates are used to write
pointcuts as logic queries. Advices are written sim-
ply as logic rules where the head of the rule speci-
fies a Lisp function that will be invoked whenever
a join point occurs that matches the pointcut and
the body of the rule specifies the pointcut. Figure
3 gives an example in which the second rule de-
fined using defrule is an advice, because its head
specifies the predicate advice with the following
signature:

1. A string that refers to a name for the advice.

2. A function symbol that refers to the method or
function implemented at the base level (Lisp)
to implement the advice.

3. A list of variables that denote the arguments
for the function that implements the advice.
This list can contain logic variables and ordi-
nary Lisp values.

The join point model of HALO defines join points
for two events in the execution of a program: a call
to a function and the creation of an instance of a
class. Two join point predicates can be used in a
pointcut to capture these join points. The call
predicate takes two arguments, being and meaning
in order:

1. A string that names the method being called
during program execution.

2. A list of logic variables and values that repre-
sent the arguments of the method being called.

The create predicate also takes two arguments,
being in order:

1. A class symbol that refers to the class being
instantiated during program execution.

2. A logic variable or value that refers to the cre-
ated instance.

A temporal operator is a higher-order predicate
that puts a temporal relation between the condi-
tions used within the operator and the conditions
used outside the operator. The temporal opera-
tors available in HALO are based on the operators
in MTL and are previous, sometime-past and
sometime-interval. Only the operators of MTL
that refer to the past are adopted, while there are

examples of pointcuts that refer to events in the
future [6, 5], this creates some obvious conceptual
and technical problems that we currently did not
wish to focus on. One of the conditions inside the
temporal operator should use a join point predi-
cate, thus connecting the join point caught by the
conditions outside the operator with one caught by
the conditions inside the operator. The other con-
ditions inside the operator can put conditions on
the context in which that past join point should
have occurred.

The meaning of the different temporal opera-
tors is as follows. When the operator previous
is used to connect two pointcuts, this means the
second pointcut – ergo the join points described
by the pointcut – occurs exactly before the first
pointcut, that is without any intervening join
points. Using the operator sometime-past to con-
nect two pointcuts implies that the events cap-
tured by the second pointcut occur sometime before
the events described by the first pointcut. Note
that only the most recent events matching that
second pointcut are captured here. The operator
sometime-interval allows one to write down a
pointcut specifying the time-stamps for which the
described join-points actually occur.

The escape pattern is a pattern with predicate
name “escape” and two arguments:

1. A logic variable.

2. A Lisp-form (ergo a Lisp program).

It allows the programmer to bind a logic variable
(first argument) to a value retrieved from evalu-
ating a Lisp-form at the base level (second ar-
gument). This Lisp-form can contain logic vari-
ables. For example, (escape ?Nr (nr-of-gifts
?Shop)) means that a method nr-of-gifts is
called on a logic variable ?Shop, which has to be
bound to an object that understands the message.
The result of this method call (a Lisp value) is
bound to the logic variable ?Nr.

4.3 The E-commerce Application in
HALO

Let us take another look at the e-commerce appli-
cation from Section 2 and see how we can imple-
ment some sample aspects based on the possible
scenarios for assigning and processing a promotion
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by using the HALO language defined in the previ-
ous section.

A first example is Figure 3. It states that a user
gets a 10% discount when she checks out, and at
that time there is seasonal promotion active.

;; Give 10% discount on checkout if there
;; is a seasonal promotion active at that time

;; CONTEXT definition
(defrule (seasonal-promo)

(escape ?D (christmas-p (today)))

;; ADVICE definition
(defrule (advice "discount" discount ’(?User 10)) ; head

(call "checkout" (?User)) ; body
(seasonal-promo)) ; body

Figure 3: Aspect 1

The implementation of the advice, the discount
method, is a plain method and can of course be
reused in another aspect definition. Note also that
the promotion context is defined as a separate rule
(seasonal-promo) and can also be used to imple-
ment a second aspect depending on that promotion
context (Figure 4).

;; Pop up banners if there is a seasonal promotion.

;; ASPECT definition
(defrule (advice "pop-up-banner" pop-up-banner ’(?User))

(create User (?User))
(seasonal-promo))

Figure 4: Banner aspect.

A second aspect is illustrated in Figure 5. This
example illustrates that not only past events are
captured, but also past values: The activation state
of the shop is the state it had when the user logged
in. The example is made more interesting by giving
customers a gift, but only when there are still gifts
left. This refers to the current state of the shop.
The combination of reasoning about past and cur-
rent values does not pose any problems.

We present another example in Figure 6. The
third aspect is more complex than the previous ex-
amples because inside the sometime-past operator
we refer to a variable ?Article that is bound in the
call form for the buy event. The buy event takes
place after the login event but the pointcut for the
login event puts a condition on a variable bound by

;; Give a customer a free gift when she checks out,
;; as longs as she logged in when the promotions
;; were activated, and the gifts are not depleted.

;; CONTEXT definitions
(defrule (gifts-depleted ?Shop)

(escape ?Nr (nr-of-gifts ?Shop))
(equal ?Nr 0))

;; ADVICE definitions
(defrule (advice "gift-on-checkout" gift ’(?User))

(call "checkout" (?User))
(sometime-past

(call "login" (?User))
(seasonal-promo))

(not (gifts-depleted ?Shop)))

Figure 5: Aspect 2

the buy event. This particular example shows off
the expressivity of HALO but imposes some diffi-
culties on the weaver (Section 4.4).

;; Give a 10% discount on the current item bought,
;; as long as the promotions for that type of item
;; were active when the user logged in (e.g. the
;; shop does a promotion for articles with a stock
;; overflow).

;; CONTEXT definitions
(defrule (stock-promo-active (?Shop ?Article))

(stock-overflow (?Shop ?Article)))

;; ADVICE definitions
(defrule (advice "discount" discount (?User ?Article 0.10))

(call "buy" (?User ?Article))
(sometime-past

(call "login" (?User))
(stock-promo-active (?Article))))

Figure 6: Aspect 3

4.4 Implementation Details

HALO is a language extension for Common Lisp.
The implementation uses the metaobject proto-
col (MOP) of the Common Lisp Object Sys-
tem (CLOS) and the Prolog interpreter by Pe-
ter Norvig [8]. We next discuss the problems for
making the system work and present the solutions.
Note, however, that we do not consider the techni-
cal details but rather provide a general idea of the
implementation.
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4.4.1 Weaving

On each method call or instance creation, a fact
has to be recorded in the logic repository so that
pointcuts can reason about it in the future. This is
achieved by use of the CLOS MOP, which allows ex-
tending the default CLOS semantics. Facts about
such events are stored in the form (call T ...) or
(create T ...) where T stands for a timestamp
which is generated by a global event counter.

The weaver for HALO is by necessity a dynamic
weaver because pointcuts can depend on informa-
tion about events that is only available at runtime,
e.g. the values of the arguments of specific method
calls. Again, the default CLOS semantics are ex-
tended to include queries of the logic repository for
applicable advices and their possible execution.

4.4.2 Implementing temporal operators

Before a rule is added to the logic repository, the
rule is compiled to Prolog analogous to the trans-
lation from MTL to first order logic defined in [2].
The basic idea is as follows. Each predicate gets an
extra argument, namely a temporal variable, that
keeps a spot to store the timestamp to which a
formula is evaluated. The temporal operators are
compiled away by putting constraints on this argu-
ment. As an example, consider the following for-
mulae compiled to Prolog.

MTL

1. (A ?a) :- (sometime-past B ?b)
2. (A ?a) :- (prev B ?b)
3. (A ?a) :- (sometime-interval a b B ?b)

Prolog

1. (A ?t ?a) :- (B ?k ?b),(< ?k ?t)
2. (A ?t ?a) :- (B ?k ?b), ?k is ?t - 1
3. (A ?t ?a) :- (B ?k ?b),(< ?k, ?t),(< ?k b),(> ?k a)

Of course, there are subtleties in compiling
nested operators such as generating new temporal
variables, maintaining order for temporal variable
constraints, etc., but these details are outside the
scope of this paper.

4.4.3 Saving object State

Rules that put constraints on variables used inside
a temporal operator are not always bound when the
event happens. For example, take aspect 3 (Figure
6) of the previous section. It states that a user

gets a discount on an article if there was a stock
overflow for that particular article at the time the
user logged in. The problem is that when the login
event happens, we cannot possibly know at that
time what article the user will buy. So we cannot
compute the result of the promo-activated condi-
tion. This variable is bound when the buy event
takes place. However at that time we must evalu-
ate the promo-activated condition in respect to the
state of the shop when the user logged in.

Therefore, whenever a method call is recorded
with such advices, as can be derived from the rule
definitions, a deep-copy is taken from the argu-
ments and this copy is used to evaluate the promo-
activated condition later on. This is similar to the
notion of taking “snapshots” of the system state in
the Reflex-based extension described in Section 3.

4.4.4 Garbage Collection

It is not very economic to store each method
call and instance creation forever because it is
very likely that the system runs out of space as
many methods are called during program execu-
tion. Luckily, we observe that certain facts become
obsolete after a new fact is added. For example,
say we have only one logic rule.

(A ?a) :- (sometime-past (call B ?b))

Recall that the semantics of the sometime-past
operator is such that only the most recent (call B
?b) event will be matched to the (sometime-past
call B ?b) goal. Even if a system generates many
such events only the last one will ever be used to
resolve a query (?- A ?a). So we can throw away
all (call B ?b) facts except the last one.

It becomes a little more complicated if we put
conditions on the arguments of the facts:

(A ?a) :- (sometime-past (call B ?b) (> ?b 5))

The goal (sometime-past (call B ?b) (> ?b
5)) will match the last (call B ?b) event that
meets the requirement (> ?b 5). So we must
keep the last (call B ?b) event that meets the
constraint, and not simply the last unconstrained
event.

There is a problem when dynamic constraints are
defined.

(A ?a) :- (sometime-past (call B ?b) (> ?b ?a))
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We cannot determine which (call B ?b) events
fulfil the (> ?b ?a) constraint because the value
of ?a is not fixed. Therefore, we cannot decide
which (call B ?b) facts become obsolete. In sim-
ple cases, we can of course see if the arguments of
successive facts are equivalent: If the ?b arguments
are simply bound to numbers, we know only one
(call B 5) has to be kept.1 However in general,
if the ?b variable is bound to complex values, such
as objects, this is not obvious.

We have implemented a program to analyze the
logic rules, checking the above cases. The rule-
analysis also takes nesting of temporal operators
into account etc. The static analysis of rules pro-
vides the conditions the garbage collector has to
check to decide whether a fact can be garbage-
collected or not.

5 Related Work

Alpha [10] is also a logic-programming-based ap-
proach to AOP and it is possible to reason about
the execution history: Events such as method calls
are represented by relations that have explicit time
stamps. A number of predicates is defined to ex-
press the order between time stamps and these are
used to express the order of events. In our approach
however, temporal operators are used to connect
entire pointcuts, creating a temporal context for
the entire pointcut expression: This allows us to
easily express that certain conditions must hold at
the time a specific events occurs.

J-LO [1] is a tool for checking temporal asser-
tions in Java programs. These temporal assertions
are written down as LTL formulae in the form of
Java annotations in the source code. LTL is a logic
that extends propositional logic with temporal op-
erators to arrange propositions on a timeline. In
J-LO, AspectJ pointcuts are the propositions, so it
is in fact possible to describe sequences of events; J-
LO also supports a free-variables mechanism, which
can be used to refer to variables bound earlier in
the execution history, but not to variables bound at
a later stage in the execution history, as is possible
in HALO.

Douence et. al. [4] formally defined event-based
aspect oriented programming (EAOP) as a general

1Static typing of logic variables might come in handy
here.

framework for AOP in which they define aspects
in terms of sequences of events emitted during pro-
gram execution (e.g. a method call) and crosscuts
are defined in terms of sequences of such events.
Currently, they have implemented an EAOP tool
which is basically an OO framework for writing
EAOP applications in Java: with this approach
they do not offer a pointcut language, but rely on
the programmer to manually generate and match
events using built-in methods.

6 Summary and Future Work

In this paper, we introduced HALO, a new pointcut
language based on temporal logic, that is explicitly
designed to tackle context awareness in aspect def-
initions. We illustrated our approach with a num-
ber of examples that show some interesting prop-
erties of this pointcut language. We presented a
straightforward implementation and outlined some
optimizations that we have incorporated. Never-
theless, efficiency is lacking and there is room for
improvement. However, we think the language is
expressive enough to pursue work in this area. In
fact, we are currently experimenting with a new
implementation based on the Rete algorithm, and
future work will concentrate on exploring the fea-
sibility of efficient implementations.
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