
Using Mixin Layers for
Context-Aware and Self-Adaptable Systems

Brecht Desmet, Jorge Vallejos Vargas, Stijn Mostinckx and Pascal Costanza
Programming Technology Lab – Vrije Universiteit Brussel

Pleinlaan 2 – 1050 Brussels, Belgium
{bdesmet,jvallejo,smostinc,pascal.costanza}@vub.ac.be

May 29, 2006

Abstract
The use of context information in networks of mobile de-
vices is crucial to respond adequately to the user’s ex-
pectations. We therefore require that applications dy-
namically adapt their behaviour according to context
changes. Current-day technology typically consists of a
series of programming patterns to achieve dynamic be-
haviour adaptation. However, combining different con-
texts in such systems has proven to be far from trivial. We
propose the use of mixin layers to modularize the context-
dependent adaptations separate from the application core
logic, together with a composition mechanism that deals
with runtime context interactions. Since the classes in
mixin layers have no fixed superclasses, they can be com-
bined easily to reflect different combinations of context.

1 Introduction
The Ambient Intelligence vision describes scenarios in
which people are pervasively surrounded by intercon-
nected embedded and mobile devices. This pervasive-
ness introduces new opportunities to make software sys-
tems sentient and aware of the context in which they ex-
ist. Such context-aware software systems automatically
adapt their behaviour according to context changes. They
are therefore called context-aware and self-adaptable sys-
tems.

The development of such systems exhibits the follow-
ing main problems. First, low-level sensor data needs

to be transformed into meaningful context information.
Next, context changes frequently imply a change in be-
haviour. Finally, a context description is often composed
from different types of information like location, time,
temperature etc. This diversity of information may pro-
duce a combinatorial explosion of possible behavioural
variants a system can exhibit.

In this paper, we focus on context-aware systems that
exhibit the following specific characteristics. First, we re-
gard the changes in behaviour as variations of the appli-
cation core logic. Throughout this paper, we will refer to
this as context-dependent adaptations. This position pa-
per argues for the use of mixin layers to implement these
context-dependent adaptations in order to keep the design
of context-aware systems manageable. Second, relevant
changes in context result in an adaptation of existing be-
haviour by applying mixin layers to a running system. Fi-
nally, different combinations of mixin layers in the inher-
itance hierarchy reflect the different combinations of con-
text. Since there can exist semantic constraints between
context-dependent adaptations, we additionally require a
mechanism that constructs valid compositions of mixin
layers at runtime.

Throughout this paper, we assume the existence of a
mechanism that generates meaningful context informa-
tion. This mechanism reifies context changes that are rel-
evant to the system as events which announce behavioural
adaptations. Such functionality is exhibited by a variety
of contemporary tools like ContextToolkit [SDA99] and
is outside the scope of this paper. In contrast, we focus on

1



strategies to incorporate context-dependent adaptations of
software behaviour.

2 Motivating example
We present the software of a simplified cellular phone as
an illustration of a context-aware and self-adaptable sys-
tem. The phone example consists of the following func-
tionalities. First, the phone harbours a list of contacts,
some of them may be marked as VIPs. This informa-
tion is encapsulated in the Contacts class. Second,
the Messages class provides facilities to read and send
messages. Third, the Journal class keeps track of all
phone and messages traffic. Finally, the main task of the
phone is to ring whenever somebody calls and to provide
the means to answer calls. This functionality is offered
by the PhoneCall class. These different functionalities
constitute the application core logic of the cellular phone.

The behaviour of the application core logic can be
adapted at runtime according to context changes. We
introduce three context-dependent adaptations that each
contain two parts: a context condition that explains when
the adaptation is applicable and the actual behaviour of
the adaptation with regards to the application core logic.

IgnoreAdaptation If the battery level is low, ignore and
log all phone calls except for contacts that are classi-
fied as VIPs.

AnswerMachineAdaptation If the time is between
11pm and 8am, activate the answering machine.

RedirectAdaptation If the user is in the meeting room,
redirect all calls and messages to the secretary.

Although the three context conditions (battery low,
time between 11pm-8am and meeting room location) can
all be true at the same time, the behaviour of the adapta-
tions cannot be freely combined. This is because adap-
tations might contradict each other, like e.g. IgnoreAdap-
tation and RedirectAdaptation. In case of a contradiction,
the user can make an arbitrary decision about what should
happen. For instance, in our phone example, the follow-
ing set of rules describes the valid combinations of adap-
tations and how contradictions should be resolved.

Rule I All adaptations can exist individually.

Rule II IgnoreAdaptation and AnswerMachineAdapta-
tion can coexist. Only VIP contacts will get in touch
with the answering machine, all other contacts will
be ignored.

Rule III IgnoreAdaptation and RedirectAdaptation can-
not coexist. RedirectAdaptation has priority.

Rule IV AnswerMachineAdaptation and RedirectAdap-
tation cannot coexist. AnswerMachineAdaptation
has priority.

3 Mixin layers

The notion of mixin layers [SB98] was introduced by
Smaragdakis et al. as an implementation technique to sup-
port refinement of collaboration-based designs. A mixin
layer is a modularisation unit that encapsulates different
mixin classes each refining a single class of the collabo-
ration. Such mixin classes (or just mixins) are also com-
monly known as abstract subclasses. The distinguishing
feature between ordinary and abstract subclasses is that
the latter have parameterized superclasses. This prop-
erty enables the instantiation of mixins with various su-
perclasses and thus supports reusability.

In practice, refinement by using mixin layers is
achieved through the ability to add or specialize methods
and classes. Moreover, mixin layers can also refine other
mixin layers because they can be composed in an inher-
itance hierarchy, yielding a layered design. Since mixin
layers are both cross-cutting (layers can affect multiple
classes) and hierarchical (layers refine existing behaviour
instead of invasively modifying it), we can represent them
graphically as a grid structure with the layers positioned
horizontally and the affected classes vertically. This is il-
lustrated in Figure 1.

Amongst others things, mixin layers are extensively
used to encapsulate the various functionalities in a soft-
ware product line. In this domain, called feature-oriented
programming, techniques to isolate features from the ap-
plication core logic are of considerable importance to al-
low one to compose features when developing a product
variant. Since feature compositions are not influenced by

2



MixinLayer2

Interface1 Interface2 Interface3 Interface4

Mixin2b Mixin2d

Mixin1b

ap
pl

ica
tio

n
co

re
 lo

gi
c

}

Mixin1a

re
fin

em
en

t

}

re
fin

em
en

t

}Class

MixinLayer1

cross-cutting

hi
er

ar
ch

ica
l

usesuses

Figure 1: Mixin layers.

runtime factors such as context events, they can be val-
idated at design time using, for example, the Feature-
Oriented Domain Analysis (FODA) model [KSJ+90].
The latter represents a hierarchical decomposition of all
features and the relationships between them.

It is our belief that the use of mixin layers can offer im-
portant contributions to the development of context-aware
and self-adaptable software. The basic idea is to sepa-
rate the context-dependent adaptations from the applica-
tion core logic and modularize them using mixin layers.
The combination of adaptations can be realized by order-
ing the mixin layers correctly in the inheritance hierarchy.

We apply this idea to our phone example from Section
2 by putting the behavioural part of the IgnoreAdapta-
tion, AnswerMachineAdaptation and RedirectAdaptation
in the IgnoreLayer, AnswerMachineLayer and
RedirectLayer respectively. Figure 2 illustrates how
the design looks like if the battery level is low and no
other context condition is satisfied. The IgnoreMixin
uses the Contacts to filter phone calls that are not
from VIPs. Furthermore, RegisterIgnore registers
all calls that are ignored in the Journal.

We have several reasons to believe that our approach
leads to more manageable software designs. First,
context-dependent adaptations can be cross-cutting (e.g.
IgnoreAdaptation affects different parts of an application)
and hierarchical (e.g. rule II combines IgnoreAdaptation
and AnswerMachineAdaptation). The notion of mixin
layers is a suitable candidate to modularize these context-

Contacts PhoneCall Message Journal

IgnoreMixin Register
Ignore

uses

IgnoreLayer

Figure 2: System design if battery level is low.

dependent adaptations because they cover both dimen-
sions. Next, the use of mixin layers to implement the
context-dependent adaptations separate from the applica-
tion core logic naturally enforces separation of concerns.
The fact that mixin layers can be instantiated with various
superclasses reduces the coupling between the mixin lay-
ers and the application core logic. This subsequently in-
creases the reusability of mixin layers within the same ap-
plication. Finally, because of the clean separation of con-
cerns and low coupling, it becomes more convenient for
an application to evolve over time. For instance, extend-
ing an application with a new context-dependent adapta-
tion consists of adding a new mixin layer. Furthermore,
the extensions can be realized without affecting the appli-
cation core logic. In order to make this approach scalable,
we need more support to model the runtime relationships
between the context-dependent adaptations. This issue is
discussed in Section 4.2.

4 Dynamic mixin layers
This section describes the consequences of implementing
the behavioural part of context-dependent adaptations us-
ing mixin layers. As is illustrated in the previous section,
mixin layers hold some promise since they allow modu-
larisation of a single adaptation, which my cross-cut the
application, in a single abstraction. Unfortunately, mixin
layers are applied once prior to the construction of the
software product and they have no identity at runtime. To
allow context-aware software to be written using mixin
layers it is required that they can be pluggable at runtime.
This pluggability should be supported by a mechanism
that constructs compositions of mixin layers that adhere
to the semantic constraints between them. In addition,

3



the program state can further constrain the composition
mechanism. All these issues are discussed in the follow-
ing sections.

4.1 Dynamic activation
The behavioural adaptations are accomplished by activat-
ing and deactivating mixin layers at runtime according to
context changes. This pluggability can be achieved by
redefining classes at runtime. Existing instances of rede-
fined classes should be updated accordingly. Furthermore,
the activation of several mixins that are part of the same
layer should be an atomic operation. On the one hand,
this might look like a harsh requirement to implement in
a static language like Java. On the other hand, by using
the reflective capabilities of dynamic languages such as
CLOS or Smalltalk, it is much more straightforward to
perform class redefinitions at runtime.

In other words, behavioural adaptations in our ap-
proach take place at the meta level in the sense that
we redefine classes and update existing instances accord-
ingly. This contrasts existing aproaches like in Context-
Toolkit [SDA99] and WildCAT [DL05] that basically em-
ploy event-handler systems. These systems apply event-
handlers in response to context changes and are therefore
completely situated at the base level.

4.2 Dynamic composition mechanism
Next to the dynamic activation of mixin layers, we also
require a composition mechanism that is able to dynam-
ically reconfigure mixin layer compositions according to
context changes. It is important to mention that our no-
tion of a dynamic composition mechanism contrasts the
static approaches of feature-oriented programming (FOP)
at two levels. First, the selection of mixin layers that
are part of the composition are computed automatically
based on context information. In FOP, this selection is
done manually at design time. Second, the composition of
mixin layers evolves over time as the context changes. On
the contrary, the compositions in FOP are not supposed
to change at runtime and are therefore fixed at design
time using program synthesis techniques. Hence, we con-
clude that there exists a huge gap between existing static
composition mechanisms where the composition does not
change at runtime and the kind of dynamic composition

Contacts PhoneCall Message Journal

IgnoreMixin Register
Ignore

AnswerMachine Register
VoiceMsgAutoReplyuses

AnswerMachineLayer

IgnoreLayer

Figure 3: System design if both battery level is low and
time is between 11pm and 8am.

mechanism that we require to reconfigure compositions
at runtime according to context changes.

We illustrate the idea with the phone example from Sec-
tion 2. Consider that the user’s phone enters a low battery
level. This means that the IgnoreLayer is to be ap-
plied to the application core logic as presented in Figure
2. The functionality provided by this layer is to ignore
and log all calls from contacts which are not classified as
VIP to conserve battery power. Now suppose the clock
strikes 11pm, triggering a context change to activate the
AnswerMachineLayer. It is the responsibility of the
dynamic composition mechanism to fulfill this request by
adding the AnswerMachineLayer to the current com-
position of mixin layers at runtime. The result of this con-
text change is shown in Figure 3.

It is common that there exist relationships between
mixin layers that must be taken into account in or-
der to construct valid compositions. The relation-
ships between the mixin layers of our phone example
are conceptually explained in Section 2 by means of
four rules. For instance, rule I and II stipulate that
AnswerMachineLayer and IgnoreLayer can ex-
ist either individually or together. If both mixin lay-
ers coexist, we actually have a new behavioural vari-
ant: Only VIPs get in touch with the answering ma-
chine. This variation is the result of organizing the
two mixin layers correctly in the inheritance hierarchy.
In this case, we require an ordering constraint between
AnswerMachineLayer and IgnoreLayer to end

4



up with the desired behaviour. We conclude that the com-
position mechanism should be aware of all relationship in-
formation between mixin layers in order to construct valid
compositions at runtime.

We can reuse some concepts of the FODA model to a
certain degree to express how mixin layers can be com-
posed in a dynamic environment. Unfortunately, FODA
lacks the expressiveness to model the runtime constraints
between mixin layers. For instance, the phone exam-
ple requires the addition of temporal constraints like the
“comes before” and “gives priority to” relationships in or-
der to capture the semantics of rules I-IV. The result is
presented in Figure 4.

Application 
Variant

AnswerMachineLayer IgnoreLayerRedirectLayer

selection

optional

comes before

gives priority to

Legenda

Figure 4: Feature diagram of cellular phone example.

The following relationship information can be derived
from the feature diagram. The AnswerMachineLayer
and RedirectLayer cannot coexist. If both mixin lay-
ers are applicable according to the associated context con-
ditions, that is if the user is in the meeting room and
the time is between 11pm and 8am, the priority goes to
AnswerMachineLayer. An equivalent relationship
holds for RedirectLayer and IgnoreLayer. In
contrast, AnswerMachineLayer and IgnoreLayer
can coexist if they appear in the correct order.

It becomes clear that the dynamic composition mecha-
nism is actually a kind of logic reasoning system that de-
rives valid compositions of mixin layers at runtime. The
model that describes all valid combinations of mixin lay-
ers (like Figure 4) determines the decisions of the rea-
soner. Every time a change in context arises, the dy-
namic composition mechanism computes a new composi-
tion based on the current composition and a request to ac-
tivate or deactivate some mixin layers. In other words, the
responsibility of the dynamic composition mechanism is

to maintain the semantic constraints between the context-
dependent adaptations.

4.3 Consistency
The information encoding the relationships between
mixin layers is not necessarily sufficient to compute valid
compositions. The program state can sometimes con-
strain the activation or deactivation of certain mixin lay-
ers. For instance, let us consider a system that trans-
forms an internal representation to both HTML and PDF.
We implement this behaviour using two mixin layers,
one for each output format. Furthermore, both lay-
ers refine the methods begin(), transform() and
end() that logically depend on each other. There is
a potential consistency problem if the layers that con-
tain the formatting behaviour are switched between the
begin() and transform() methods calls or between
the transform() and end() method calls.

A possible solution is to introduce a locking system
with regard to mixin layers. The concrete idea is as fol-
lows. Once the begin() method is called, the mixin
layer that contains the transformation behaviour should
be locked. This means that it cannot be deactivated by the
composition mechanism. As soon as the end() method
has finalized the transformation task, the mixin layer may
be unlocked. From that moment on, the composition
mechanism is allowed to deactivate the mixin layer. This
mechanism ensures consistent program behaviour by in-
troducing runtime constraints in the composition mecha-
nism.

5 Position statement
We advocate to implement context-aware and self-
adaptable systems using a layered design approach be-
cause this leads to more manageable software designs.
The basic idea is to separate context-dependent adapta-
tions from the application core logic and put them into
separate modularisation units. This paper gives several
reasons why the mixin layers approach is a good candi-
date to implement the context-dependent adaptations.

Next, we propose to describe relationships between
mixin layers in a declarative way. This enables a dy-
namic composition mechanism to construct and apply

5



valid compositions of mixin layers according to con-
text changes. The combination of using mixin layers
and a declarative language to describe relationships be-
tween mixin layers is a powerful mechanism to deal with
the continuously varying behaviour of context-aware sys-
tems.

Finally, it is important that the dynamic composition
mechanism can be constrained at runtime. A concrete ex-
ample is the possibility to lock activated mixin layers for
a certain time to enforce consistency.

References
[DL05] Pierre-Charles David and Thomas Ledoux.

Wildcat: a generic framework for context-
aware applications. In MPAC ’05: Proceed-
ings of the 3rd international workshop on Mid-
dleware for pervasive and ad-hoc computing,
pages 1–7, New York, NY, USA, 2005. ACM
Press.

[KSJ+90] K. Kang, S.Cohen, J.Hess, W.Novak, and
S.Peterson. Feature-oriented domain analy-
sis (foda) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineer-
ing Institute, Pittsburgh, U.S.A., nov 1990.

[SB98] Yannis Smaragdakis and Don Batory. Im-
plementing layered designs with mixin layers.
In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP),
pages 550–570. Springer-Verlag LNCS 1445,
1998.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D.
Abowd. The context toolkit: aiding the de-
velopment of context-enabled applications. In
CHI ’99: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems,
pages 434–441, New York, NY, USA, 1999.
ACM Press.

6


