Simulation of Quantum Computations in Lisp

Brecht Desmet, Ellie D’Hondt, Pascal Costanza and Theo D’Hondt
Programming Technology Lab — Vrije Universiteit Brussel
Pleinlaan 2 — 1050 Brussels, Belgium
{bdesmet,eldhondt,pascal.costanza,tjdhondt} @vub.ac.be

May 22, 2006

Abstract

This paper introduces QLisp, a compact and expressive language extension of
Lisp that simulates quantum computations. QLisp is an open experimental and
educational platform because it translates the quantum computations into the un-
derlying mathematical formalism and offers the flexibility to extend the postulates
of quantum mechanics. Although the complexity degree of quantum mechanics
is inherently exponential, QLisp includes some optimizations that prune in both
space and time.

1 Introduction

Quantum computation is a relatively young interdisciplinary research field that arose
from an intersection of quantum mechanics [Dir47], mathematics [VN55] and com-
puter science [Deu85]. The interest in this research topic received a profound boost
when Shor [Sho96] showed how RSA encryption [RSA78] can be decrypted efficiently
using a quantum computer. Unfortunately, we are still far from the implementation of
a general-purpose quantum computer. The absence of such a machine motivates re-
searchers to build and exploit quantum similators.

In this paper, we introduce QLisp, a quantum simulator integrated in the Com-
mon Lisp programming language. The main characteristics of QLisp are as follows.
First, the simulator has the flavour of a model because all quantum computations are
translated to the underlying mathematical formalism. Second, QLisp supports the flex-
ibility to observe and modify quantum computations at runtime, something which is
not allowed by the postulates of quantum mechanics. By thinking in terms of mathe-
matical linear structures, the code becomes easier to read and comprehend. Next, we
took advantage of the many powerful abstraction techniques of Lisp which resulted in
a very compact and expressive language extension to describe quantum computations.
Therefore, it is our belief that QLisp has interesting educational opportunities. Finally,
QLisp has some optimizations included that prune in the exponential complexity de-
gree of quantum mechanics.

This paper is organised as follows. Before we motivate some major design deci-
sions of QLisp in Section 3, we provide a short introduction of quantum computations
in Section 2. Next, Section 4 highlights the architecture and efficiency considerations
of QLisp. We finish this paper with example code of some popular quantum algoritms
in Section 5.

2 Quantum computation in a nutshell

Moore’s law indicates that the speed of processors doubles every 18 months because
of the miniaturisation of processor units. When these units reach the atomic level,
the postulates of quantum mechanics become applicable instead of the classical laws
of physics. The non-intuitive behaviour and properties of atoms constitute the basis
for a new kind of computation called quantum computation, a subdomain of quantum
mechanics. The latter describes the behaviour of light and matter at the atomic level.
The important advantage of this alternative way of computing is the fact that some
problems, like prime factorization, can be solved efficiently. So far, this is not possible
with classical computations. This section provides a short introduction of the basic
concepts of quantum computation required for this paper. For a detailed description of
quantum computing, we refer to the book of Nielsen & Chuang [NCO00].

The elementary building block of a classical Turing machine is a bit. Its state is
deterministic (0 or 1) and always observable. Consequently, it is possible to copy the
state of a bit. Furthermore, classical computations are not always reversible, like e.g. a
conjunction that evaluated to false. This might seem straightforward, but this is not the
case in quantum computation.

The possible states of a gubit, the quantum analogue of a bit, are |0) and |1) which
correspond to the states of a classical bit. The Dirac notation ‘|)’ is the standard no-
tation for states in quantum mechanics. The main difference between bits and qubits
is that qubits can be in different states at the same time. In mathematical terms, an
arbitrary qubit |¢/) is expressed by means of a linear combination, i.e. a superposition,
of the basis states |0) and |1), as given in Equation 1. The variables a,b € C used in
this equation are called amplitudes.

o) =a)+oy=a| o |+] =])

The state of qubits is not observable without disturbance in the sense that we cannot
examine the amplitudes a and b directly. Instead, quantum mechanics only allows us
to measure a qubit such that its state irrevocably collapses in one of its basis states.
For instance, if we measure [¢), the result will be either 0 with probability |a|? or 1
with probability |b|2. Furthermore, it is not possible to clone qubits because of the
no-cloning theorem [WZ82].

Single qubits can be composed to an n-qubit by means of the tensor product ®.
Such multiple qubits consist of 2" superposition terms of the basis states |0) and |1).
This means that the representation of an n-qubit on a classical computer results in an
exponential growth of space complexity. For instance, the composition |¢) of the qubits
|th1) = a]0) + b|1) and |¢)2) = ¢|0) + d|1) is presented in Equation 2. The equivalent
decimal notation is presented in Equation 3.

|9) = 1) ® [ih2)
= acl00) + ad|01) 4 bc|10) + bd|11) (2)
= ac|0) + ad|l) + bc|2) + bd|3) 3)

Quantum computations can be represented graphically using quantum circuits. Fig-
ure 1 presents an example of a quantum circuit that implements the famous Deutsch-
Jozsa algorithm [DJ92]. In this section, we only concentrate on the semantics of the

0) —H " | HE A

U ()
1) H|

Figure 1: Quantum circuit of Deutsch-Jozsa algorithm

circuit, the algorithm itself is explained in Section 5.1. The horizontal single and dou-
ble lines represent respectively qubit and bit wires. The slash added to the upper wire
indicates that this wire transports multiple qubits. The initial state of each wire is in-
dicated at the beginning of each wire. The topmost qubit wire is measured at the end
which yields useful classical information.

The rectangular boxes placed on top of the wires represent quantum operators.
Such operators are linear unitary operations which can be described by means of ma-
trices. The actual application of a quantum operator consists of a matrix multiplication.
For example, Equation 4 presents the application of the Hadamard quantum operator
H to the qubit |1). Because of the unitary evolution of quantum states, all quantum
computations are reversible.

w51 AL-[g])

The application of H to |¢)) on a quantum computer requires only one computa-
tional step. We call this property quantum parallelism because a classical computer
requires two computational steps to compute the result. This is exactly what makes
quantum computers so powerful: their computing power grows exponentially in com-
parison with classical computations. Contrastingly, this is also what makes quantum
simulators so inefficient because the processing of 2" superposition terms needs to be
serialized.

In the above circuit, the quantum operator H®" indicates that the Hadamard oper-
ator is applied to all n qubits of the topmost wire. Quantum operators can also operate
on different qubit wires. For instance, the operator U, which implements the function
f, takes the topmost qubit wire as input for f and applies the result of f to the other
qubit wire. Optionally, one can associate a control qubit with a quantum operator. The
latter is called a conditional quantum operator and is only applied if the control qubit
is set. For example, the quantum circuit presented in Figure 3 employs the conditional
operator R. The vertical bar points to the control qubit.

-
=N

3 Motivation

This section motivates the different design decisions of QLisp and compares them
with existing approaches. First, Section 3.1 highlights two important characteristics of
reality-based simulation and explains the concrete implications of these characteristics
in quantum simulator development. Next, Section 3.2 introduces another simulation
approach, which we call simulation as a model. We compare both approaches and mo-
tivate why QLisp is a simulation as a model. Finally, the educational opportunities of
QLisp are explained in Section 3.3.

3.1 Reality-based simulation

The domain of reality-based simulation tries to imitate concepts of the real world as
accurately as possible. The state of the art in quantum simulator development indi-
cates a high interest in such reality-based simulators [003, BSCO1]. These quantum
simulators typically transform high-level quantum operators into sequences of efficient
primitives. Afterwards, these primitives can be executed on a hypothetical quantum
processor, using a hypothetical quantum memory. The claim is that the simulated pro-
cessor and memory could be replaced easily with an actual processor and memory.
Whether eventual quantum processors and memory will correspond to the hypothetical
ones, still remains to be seen.

Next, reality-based simulation prohibits to perform actions that are not realisable
in the real world. In terms of a quantum simulator, this means that e.g. qubits cannot
be observed or cloned without disturbance due to the postulates of quantum mechan-
ics. However, we argue that current research should lay more emphasis on quantum
simulators that enable flexible experimentation capabilities as a means for exploring
and investigating new quantum algorithms. This explains why quantum simulators that
exceed the postulates of quantum mechanics and allow exploration and manipulation
facilities, become more and more important. Opening the quantum mechanical borders
allows us to perform experiments that are not realisable on a real quantum computer -
if it should exist.

3.2 Simulation as a model

QLisp follows the notion of a simulation as a model which contrasts reality-based sim-
ulation. This section describes the two main characteristics of a simulation as a model
and compares them with the reality-based approach. Furthermore, both characteristics
are illustrated with a concrete example that introduces the basics of QLisp.

First, QLisp translates the quantum computations directly to the underlying math-
ematical formalism of quantum mechanics. This contrasts approaches like e.g. the
transformation of high-level quantum operators into a universal set of primitive quan-
tum operators [Tuc99]. We believe that thinking in terms of mathematical concepts
is much more meaningful for humans than thinking in terms of low-level primitives,
which are intended to be meaningful for computers. This design choice consequently
increases the accessability of QLisp towards scientists from various disciplines other
than computer science.

Example 1 The following example clarifies how one can take advantage of thinking
in terms of mathematical concepts. The function (make—-qureg n &optional
init-fn) constructs a quantum register of size n which represents an n-qubit. Op-
tionally, one can define a higher-order init—=fn that initializes quantum registers in
an arbitrary state. For instance, the hadamard-init function initializes the register
in the state H®™|0) which means that the Hadamard operator is applied to all qubits of
the register. This higher order function has direct access to the internal representation
of a quantum register, that is a matrix of dimension 1 x 2™ containing all amplitudes.
The mathematical meaning of H®™|0) is that each amplitude of the resulting n-qubit
has the value 1/\/27

(defun hadamard-init ()
"return hadamard init-fn for quantum register"”
(lambda (matrix)
(matrix-do (matrix entry element)
(setf element
(/ 1 (sgrt (matrix-rows matrix)))))))

(make—-qureg n (hadamard-init))

Next, reality-based simulators typically offer at the most limited relaxations of the
postulates of quantum mechanics. This means that classical operations like accessing
or copying quantum data cannot be realized without disturbing the quantum mechanical
system. By using a quantum simulator, we can go beyond the postulates of quantum
mechanics. This enables new interesting opportunities like e.g. exploring the domain
of quantum error correction [AB97]. QLisp allows a user to freely observe, modify
and clone quantum registers and operators. Nevertheless, the choice of exceeding the
postulates of quantum mechanics is optional.

Example 2 The mod—exp function implements the conditional modular exponenti-
ation operation (x® modn) on _qureg2_ using _quregl_ as the control qubit.
Because we are able to observe and modify the amplitudes without disturbance, we
can implement the modular exponentiation using an efficient classical algorithm. The
modular exponentiation quantum operator is a crucial part of the algorithm of Shor
which computes prime factorizations. Throughout this paper, we use the following
coding convention. Quantum registers _qureqg__ are surrounded by underscores and
quantum operators —qop— with dashes.

(defun mod-exp (_quregl_ _quregZ_ X n)
"modular exponentiation simulation"
(let* ((sizel (qureg-size _quregl_))
(size2 (qureg-size _quregl_))
(ampll (amplitude-count _quregl_))
(ampl2 (amplitude-count _quregZ_))
(_result_ (make—-qureg (+ sizel size2))))
(loop for basis from 0 below ampll do
(let ((result-basis
(+ (* basis amplZ)
(modular—-exponentiation x basis n))))
(setf (get—amplitude _result_ result-basis)
(get-amplitude _quregl_ basis))))
result))

In reality, one should implement another quantum circuit that computes the modular
exponentiation by means of low-level qubit operations, like e.g. [VVE96].

3.3 Educational opportunities

Several reasons indicate that QLisp has interesting educational opportunities. First,
the quantum computations are expressed in terms of the underlying mathematical for-
malism. This offers students a concrete grasp on the notion of quantum computations
in terms of linear mathematical operations. Next, since QLisp extends the postulates

of quantum mechanics, students can inspect the evolution of a particular algorithm and
learn what is happening in terms of amplitude distribution. Finally, the use of a compact
and expressive language allows students to concentrate on the quantum computations
without suffering from other irrelevant technicalities.

4 Implementation of QLisp

QLisp is a language extension built on top of Lisp. The details of this approach are
discussed in Section 4.1. Next, two optimization techniques are included in QLisp
that prune in the exponential complexity degree of quantum mechanics. These are
explained in Section 4.2.

4.1 Language extension

One of the important concerns of a quantum simulator is to express quantum compu-
tations in the right high-level programming language. The most straightforward option
is to express the quantum computations in a classical programming paradigm, such as
the procedural [003] or object-oriented [BSCO1] paradigm and limit the flexibility of
the paradigm in order to match the postulates of quantum mechanics.

In QLisp, we adhere to the following quote by Abselson & Sussman: “Programs
must be written for people to read, and only incidentally for machines to execute.”
[AS96]. Concretely, we extended the Common Lisp [AI96] programming language
with additional layers of abstraction. These layers contain abstract data types and sim-
ulation algorithms to implement arbitrary quantum circuits. Lisp is extremely useful
for these purposes because it was especially designed to be extended [Gra96].

We take advantage of the multi-paradigm approach of Lisp and the various pow-
erful abstraction techniques to express quantum circuits without limiting ourselves to
a particular programming paradigm. For instance, whereas the functional paradigm
is suited to implement the various mathematical linear operations, the object-oriented
paradigm is better suited to implement datastructures. Furthermore, the repetitive tasks
are generalised using macros that hide a maximum level of details to increase read-
ability. An illustration of this is shown in Example 3. The result of this all is a very
compact, expressive and comprehensible programming environment.

Example 3 This example employs the qureg—do macro which supports easy condi-
tional iteration over the amplitudes of a quantum register. We use this macro to imple-
ment the swap operator, which swaps two qubits of a multiple qubit. The simulation
function swap takes as input a quantum register and two indices (qidl and gid2)
that indicate the qubits that should be swapped. At each iteration step of qureg—do,
the symbol basis contains the decimal value of the current basis state and the corre-
sponding amplitude. Optionally, one can define a £ilter that skips basis states
that do not conform to the filter query. For instance, the application of the filter query
|x11) means that only the basis states with decimal value 3 and 7 are considered. The
macro qureg—do performs this job efficiently because it uses binary arithmetic to
filter basis states instead of repeated conditional tests.

(defun swap (_qureqg_ qidl gidZ2)
"perform swap operation with gidl < gid2"
(let+ ((_result__ (copy—-qureg _qureg_))
(jump (calc-jump (qureg-size _qureqg_) qgidl))
(filter (make-normal-filter ‘((,qidl 0) (,gid2 1)))))
(qureg—-do
(_result_ basis amplitude filter)
(setf
amplitude (get-amplitude _qureg_ (+ basis jump))
(get-amplitude _result_ (+ basis jump)) amplitude))
result))

4.2 Efficiency considerations

The most fundamental problem of simulating quantum computations on a classical
computer is the exponential complexity degree in both space and time. The exponen-
tial space complexity is due to the fact that an n-qubit is internally represented as a
column matrix containing 2" amplitudes. Each amplitude is a complex number which
consists of two floating point numbers. Quantum computations also suffer from an ex-
ponential time complexity. On a real quantum computer, the application of a quantum
operator to an n-qubit means that the operator is applied to all 2™ superposition terms
in one computational step. This phenomenon, called quantum parallelism, needs to be
serialized on a classical computer. Moreover, parallel computers, which have multiple
processing units, can only reduce the time complexity with a linear factor.

This section presents two optimizations, sparse matrices and single operator ap-
plication, that prune away in space and time. These optimizations are only stopgap
measures which support small computational problems. Due to the nature of quan-
tum mechanics, the simulation of quantum computations in QLisp still suffers from an
inherent exponential time and space complexity.

The first optimization reduces the memory consumption in certain cases by using
sparse matrices. Both quantum registers and operators use sparse matrices to represent
their state. The elements of a sparse matrix are stored in a hash-table that contains only
non-zero elements.

Next to that, we also optimized the case in which an arbitrary quantum operator V'
is applied to a single qubit |g;) that is part of an n-qubit [¢)) = |qoq1 - . - Gn—1). In the
worst case, this should be calculated as follows using I as the identity operator. First, a
quantum operator O = I®* @V @ I®"~i~1 needs to be computed that matches the size
of [¢). Second, we need to compute the matrix multiplication O|v). Because the oper-
ator O contains a total of 22" elements with only 27+l elements different from zero, the
number of calculation steps for such operators can be reduced. This kind of optimiza-
tion is standard practice in QLisp. The macro (gqc-apply _qureg_ op-instr)
applies a list op—instr of quantum instructions to a quantum register _qureg_. A
quantum instruction is a 3-tuple (-op—- gid cgid) that consists of a quantum op-
erator —op—, the index of the target qubit gid and an optional index of the conditional
qubit cgid.

Example 4 The code extract below implements a modified version of the quantum tele-
portation circuit (see Figure 2) which moves a qubit from one place to another. We
choose this modified version because it clearly illustrates the expressiveness of the
gc—apply macro. The following operators are applied from left to right: conditional

not (—cnot—), Hadamard (—h-), conditional Pauli-X (-x—) and conditional Pauli-Z

(—z-).
) - HE——1— 1

b1) ' A
[b2) —é@—)

Figure 2: modified quantum teleportation circuit

The example uses the init—-qureqg macro which initializes the qubits 1) and
|B) = |é1) ® |@p2) in a user-defined state. The function partial-measure—-qureg
measures a subset of qubits that are part of a quantum register by means of their index
number.

(let ((_psi_ (init—-qureg
((/ 1 2) (/ (sqrt 3) 2))))
(_beta_ (init-qureg
((/ 1 (sqrt 2)) 0 0 (/ 1 (sqrt 2))))))
(partial-measure—qureg
(gc-apply (tensor-items _psi_ _beta)
((-cnot—- 1 0) (-h- 0)
(-x— 2 1) (-z— 2 0)))
(0 1)))

S Applications

5.1 Algorithm of Deutsch-Jozsa

This algorithm solves the problem of Deutsch efficiently [DJ92]. Let us consider the
function f : {0, 1,..., 2”’1} — {0, 1}. We call the function f constant if it returns
the same value, that is O or 1, for all elements of the domain. If f returns O for one
half of the elements and 1 for the other half, we call f balanced. The problem of
distinguishing between constant and balanced functions can be solved efficiently with
the algorithm of Deutsch-Jozsa. The quantum circuit of this algorithm is displayed in
Figure 1. The implementation in QLisp is as follows.

(defun deutsch-jozsa (n unitary-£fn)
"returns T if unitary-fn is constant"

(let* ((_phil_ (make-qureg n (hadamard-init)))
(_phi2_ (gc-apply
(make-qureg 1 (standard-init 1)) (-h-)))
(_psi_ (funcall unitary-fn

(tensor—-items _phil_ _phi2_))))
(constant—-qureg-p
(collapse—-basis
(gc—apply-range _psi_ -h- 0 (1- n))))))

“]1> Rnfl Rﬂ

‘J2> \i Ry Ry I

‘j'n,fl> e R2

|7n) ... @

Figure 3: QFT quantum circuit

The parameter unitary—-=£n is a higher-order function that takes a quantum reg-
ister as input, performs a quantum operation that implements f(x) on it and returns
the resulting quantum register. In the last but one step of the algorithm, the quan-
tum operator H®" is applied to the first n qubits. This is implemented with the
(gc-apply-range _qureg_ —-op- from-gid to-gid) function. The in-
dices from—-gid and to—qgid determine the range of qubits of the quantum register
psi to which the Hadamard quantum operator —h- is applied.

We obtain the result of the algorithm by measuring the quantum register _psi_
with collapse-basis. The latter function returns the decimal value of the mea-
sured basis state using a random number generator. It can be mathematically proven
that, if the measure result equals O or 1, the unitary function Uy is constant. In all
other cases, Uy is balanced. This condition is checked by the constant-qureg-p
predicate.

The best classical algorithm requires 2" /2 + 1 applications of f(x) to verify if
the function is constant or balanced. The algorithm of Deutsch-Jozsa can solve this
problem more efficiently on a quantum computer consuming only one application of

f(@).

5.2 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) [CEMMO98, GN96] is the quantum counter-
part of the classical Fourier transformation. Although the classical and quantum ver-
sion have the same time complexity, we employ the quantum version because it is a
required intermediate step of Shor’s algorithm [Sho96]. The latter computes prime
factorizations in polynomial time complexity. The quantum circuit that implements
QFT is displayed in Figure 3. Equation (5) displays the matrix representation of the
conditional quantum operator Ry, used in this circuit.

1 0
Rk) = (0 627Ti/2k) (5)

A parameterized quantum operator can be constructed using the i nit—-gop macro.
The latter facilitates the definition of user-defined quantum operators.

(defun get-operator-r (k)
(let* ((t (/ (* 2 pi) (exp 2 k)))

(factor (cis t)))
(init-gop ((1 0) (0 factor)))))

We can now implement the quantum circuit of Figure 3. The repetitive parts of
this circuit are reflected in the various loops that deal with the indices of the affected

qubits. In order to keep the design functional to a certain degree, we make use of the
copy—qureg function that clones qubits. The latter violates the no-cloning theorem.
The actual quantum computations are performed by the gc—apply macro.

(defun quantum-fourier (_qureg_)
"apply quantum fourier via parallel network"
(let ((size (qureg-size _qureg_))
(_result_ (copy—-qureg _qureg_)))
(loop for gid from 0 below size do
(setf _result_ (gc—apply _result_ ((-h- gid))))
(loop for c—qgid from (1+ gid) below size
for k from 2 do
(setf _result_
(gc—apply _result_ (((r-gop k) gid c-gid))))))
(loop for i from 0 below (/ size 2)
for j from (1- size) above (/ size 2) do
(setf _result_ (swap _result_ i 3J)))
result))

The result of the quantum-fourier function is a quantum register with the
discrete Fourier transform applied to all amplitudes. The optimized simulation algo-
rithm used in gc—apply and the quantum registers which are actually sparse matrices
guarantee that the number of computational steps and memory usage to simulate the
quantum computations are minimized.

6 Conclusion

QLisp is a compact, expressive and comprehensible language extension of the Lisp
programming language for simulating quantum computations. This extension consists
of abstract data types, simulation algorithms and useful macros that allow one to im-
plement and compute arbitrary quantum circuits. The simulator has the flavour of a
model because the quantum computations are translated into their mathematical coun-
terpart. Furthermore, we relaxed the postulates of quantum mechanics in the sense that
quantum states may be observed and modified anytime. These characteristics lead to a
simulator that has a great potential for experimental and educational purposes.

There are two main optimizations included in QLisp that prune in the exponen-
tial complexity degree of quantum mechanics. The first optimization reduces memory
consumption in certain cases by using sparse matrices. Next to that, we provide a
simulation algorithm that reduces the number of calculation steps of a single quantum
operator application.

The all-round capabilities of QLisp are illustrated by means of two applications.
The algorithm of Deutsch-Jozsa solves the problem of Deutsch more efficiently than
is possible with classical computations. Next, we implemented the quantum Fourier
transform, an important intermediate step of the algorithm of Shor that calculates prime
factorizations in polynomial time complexity.

10

References

[AB97]

[AI96]

[AS96]

[BSCO1]

[CEMMOS8]

[Deu8S5]

[Dir47]

[DJ92]

[GN96]

[Gra96]

[NCO00]

[003]

[RSA78]

[Sho96]

[Tuc99]
[VN55]

D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with
constant error. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pages 176—188, 1997.

American National Standards Institute and Information Technology In-
dustry Council. American National Standard for information technology:
programming language — Common LISP: ANSI X3.226-1994. 1996.

Harold Abelson and Gerald J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, MA, USA, 1996.

S. Bettelli, Luciano Serafini, and T. Calarco. Toward an architecture for
quantum programming. CoRR, cs.PL/0103009, 2001.

R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms
revisited. Proc. R. Soc. of Lond. A, 454:339-354, 1998.

D. Deutsch. Quantum theory, the Church-Turing principle and the univer-
sal quantum computer. Proc. R. Soc. Lond. A, 400:97-117, 1985.

P. A. M. Dirac. The Principles of Quantum Mechanics. The interna-
tional series of monographs on physics. Clarendon Press, Oxford, 4 edi-
tion, 1947.

D. Deutsch and R. Jozsa. Rapid solution of problems by quantum com-
putation. In Proceedings of the Royal Society of London, 439:553-558,
1992.

R. B. Griffiths and C.-S. Niu. Semiclassical fourier transform for quantum
computation. Phys. Rev. Lett., 76:3228, 1996.

Paul Graham. ANSI Common Lisp. Prentice Hall Press, Upper Saddle
River, NJ, USA, 1996.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, UK, 2000.

Bernhard Omer. Structured Quantum Programming. PhD thesis, Techni-
cal University of Vienna, 2003.

R. L. Rivest, A. Shamir, and L. Adleman. A method of obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

P. W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comp., 26(5):1484—
1509, 1996.

Robert R. Tucci. A rudimentary quantum compiler(2cnd ed.). 1999.

J. von Neumann. Mathematical Foundations of Quantum Mechanics.
Princeton University Press, 1955.

11

[VVE96] A. Barenco V. Vedral and A. Ekert. Quantum networks for elementary
arithmetic operations. Phys. Rev. A, 54:147, 1996.

[WZ82] W. Wootters and W. Zurek. A single quantum cannot be cloned. Nature
299, pages 802-803, 1982.

12

